These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 33994580)
1. Contact Stability and Contact Safety of a Magnetic Resonance Imaging-Guided Robotic Catheter Under Heart Surface Motion. Hao R; Erdem Tuna E; Çavuşoğlu MC J Dyn Syst Meas Control; 2021 Jul; 143(7):071010. PubMed ID: 33994580 [TBL] [Abstract][Full Text] [Related]
2. Contact Stability Analysis of Magnetically-Actuated Robotic Catheter Under Surface Motion. Hao R; Greigarn T; Çavuşoğlu MC IEEE Int Conf Robot Autom; 2020; 2020():4455-4462. PubMed ID: 34123481 [TBL] [Abstract][Full Text] [Related]
3. A Probabilistic Approach for Contact Stability and Contact Safety Analysis of Robotic Intracardiac Catheter. Hao R; Çavuşoğlu MC J Dyn Syst Meas Control; 2021 Sep; 143(9):094502. PubMed ID: 34334808 [TBL] [Abstract][Full Text] [Related]
4. Task-Space Motion Planning of MRI-Actuated Catheters for Catheter Ablation of Atrial Fibrillation. Greigarn T; Cavuşoğlu MC Rep U S; 2014 Sep; 2014():3476-3482. PubMed ID: 25485168 [TBL] [Abstract][Full Text] [Related]
5. Analytical Computation of the Contact Force Jacobian for MRI-Actuated Robotic Catheter. Itsarachaiyot Y; Hao R; Çavuşoğlu MC Rep U S; 2023 Oct; 2023():10268-10274. PubMed ID: 38784715 [TBL] [Abstract][Full Text] [Related]
6. Pacing Mediated Heart Rate Acceleration Improves Catheter Stability and Enhances Markers for Lesion Delivery in Human Atria During Atrial Fibrillation Ablation. Aizer A; Cheng AV; Wu PB; Qiu JK; Barbhaiya CR; Fowler SJ; Bernstein SA; Park DS; Holmes DS; Chinitz LA JACC Clin Electrophysiol; 2018 Apr; 4(4):483-490. PubMed ID: 30067488 [TBL] [Abstract][Full Text] [Related]
7. Analysis of Contact Stability and Contact Safety of a Robotic Intravascular Cardiac Catheter under Blood Flow Disturbances. Hao R; Poirot NL; Çavuşoğlu MC Rep U S; 2020 Oct; 2020():3216-3223. PubMed ID: 34079624 [TBL] [Abstract][Full Text] [Related]
8. Eliminating the effects of motion during radiofrequency lesion delivery using a novel contact-force controller. Gelman D; Skanes AC; Jones DL; Timofeyev M; Bar-On T; Drangova M J Cardiovasc Electrophysiol; 2019 Sep; 30(9):1652-1662. PubMed ID: 31353683 [TBL] [Abstract][Full Text] [Related]
9. Towards active tracking of beating heart motion in the presence of arrhythmia for robotic assisted beating heart surgery. Tuna EE; Karimov JH; Liu T; Bebek Ö; Fukamachi K; Çavuşoğlu MC PLoS One; 2014; 9(7):e102877. PubMed ID: 25048462 [TBL] [Abstract][Full Text] [Related]
10. Application of Adaptive and Switching Control for Contact Maintenance of a Robotic Vehicle-Manipulator System for Underwater Asset Inspection. Cetin K; Zapico CS; Tugal H; Petillot Y; Dunnigan M; Erden MS Front Robot AI; 2021; 8():706558. PubMed ID: 34395538 [TBL] [Abstract][Full Text] [Related]
12. Heart Motion Prediction Based on Adaptive Estimation Algorithms for Robotic Assisted Beating Heart Surgery. Tuna EE; Franke TJ; Bebek O; Shiose A; Fukamachi K; Cavuşoğlu MC IEEE Trans Robot; 2013 Feb; 29(1):261-276. PubMed ID: 23976889 [TBL] [Abstract][Full Text] [Related]
13. Development of a force-reflecting robotic platform for cardiac catheter navigation. Park JW; Choi J; Pak HN; Song SJ; Lee JC; Park Y; Shin SM; Sun K Artif Organs; 2010 Nov; 34(11):1034-9. PubMed ID: 21092046 [TBL] [Abstract][Full Text] [Related]
14. Role of Contact Force Sensing in Catheter Ablation of Cardiac Arrhythmias: Evolution or History Repeating Itself? Ariyarathna N; Kumar S; Thomas SP; Stevenson WG; Michaud GF JACC Clin Electrophysiol; 2018 Jun; 4(6):707-723. PubMed ID: 29929663 [TBL] [Abstract][Full Text] [Related]
15. A double-loop structure in the adaptive generalized predictive control algorithm for control of robot end-point contact force. Wen S; Zhu J; Li X; Chen S ISA Trans; 2014 Sep; 53(5):1603-8. PubMed ID: 24973336 [TBL] [Abstract][Full Text] [Related]
16. Quantitative magnetic resonance imaging analysis of the relationship between contact force and left atrial scar formation after catheter ablation of atrial fibrillation. Sohns C; Karim R; Harrison J; Arujuna A; Linton N; Sennett R; Lambert H; Leo G; Williams S; Razavi R; Wright M; Schaeffter T; O'Neill M; Rhode K J Cardiovasc Electrophysiol; 2014 Feb; 25(2):138-45. PubMed ID: 24118197 [TBL] [Abstract][Full Text] [Related]
17. Design of a Magnetic Resonance Imaging Guided Magnetically Actuated Steerable Catheter. Liu T; Lombard Poirot N; Greigarn T; Cenk Çavuşoğlu M J Med Device; 2017 Jun; 11(2):0210041-2100411. PubMed ID: 28690711 [TBL] [Abstract][Full Text] [Related]
18. Advanced electrophysiologic mapping systems: an evidence-based analysis. Medical Advisory Secretariat Ont Health Technol Assess Ser; 2006; 6(8):1-101. PubMed ID: 23074499 [TBL] [Abstract][Full Text] [Related]
19. Miniaturized Robotic End-Effector with Piezoelectric Actuation and Fiber Optic Sensing for Minimally Invasive Cardiac Procedures. Aranda-Michel E; Yi J; Wirekoh J; Kumar N; Riviere CN; Schwartzman DS; Park YL IEEE Sens J; 2018 Jun; 18(12):4961-4968. PubMed ID: 30555284 [TBL] [Abstract][Full Text] [Related]
20. Clinical utility of automated ablation lesion tagging based on catheter stability information (VisiTag Module of the CARTO 3 System) with contact force-time integral during pulmonary vein isolation for atrial fibrillation. Okumura Y; Watanabe I; Iso K; Nagashima K; Sonoda K; Sasaki N; Kogawa R; Takahashi K; Ohkubo K; Nakai T; Nakahara S; Hori Y; Hirayama A J Interv Card Electrophysiol; 2016 Nov; 47(2):245-252. PubMed ID: 27278517 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]