BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 33994656)

  • 1. Evaluation of a New Optic-Enabled Portable XRF Instrument for Measuring Toxic Metals/Metalloids in Consumer Goods and Cultural Products.
    Guimarães D; Praamsma ML; Parsons PJ
    Spectrochim Acta Part B At Spectrosc; 2016 Aug; 122():192-202. PubMed ID: 33994656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of portable XRF instrumentation for assessing potential environmental exposure to toxic elements.
    McIntosh KG; Guimarães D; Cusack MJ; Vershinin A; Chen ZW; Yang K; Parsons PJ
    Int J Environ Anal Chem; 2016; 96(1):15-37. PubMed ID: 33746339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid screening of heavy metals and trace elements in environmental samples using portable X-ray fluorescence spectrometer, A comparative study.
    McComb JQ; Rogers C; Han FX; Tchounwou PB
    Water Air Soil Pollut; 2014 Dec; 225(12):. PubMed ID: 25861136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Benchtop x-ray fluorescence to quantify elemental content in nails non-destructively.
    Specht AJ; Adesina KE; Read DE; Weisskopf MG
    Sci Total Environ; 2024 Mar; 918():170601. PubMed ID: 38309346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of field-portable XRF analyzers for rapid screening of toxic elements in FDA-regulated products.
    Palmer PT; Jacobs R; Baker PE; Ferguson K; Webber S
    J Agric Food Chem; 2009 Apr; 57(7):2605-13. PubMed ID: 19334748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of portable XRF and ICP-OES analysis for lead on air filter samples from a lead ore concentrator mill and a lead-acid battery recycler.
    Harper M; Pacolay B; Hintz P; Andrew ME
    J Environ Monit; 2006 Mar; 8(3):384-92. PubMed ID: 16528423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of macro, micro and trace elements in citrus fruits by inductively coupled plasma-optical emission spectrometry (ICP-OES), ICP-mass spectrometry and direct mercury analyzer.
    Hong YS; Choi JY; Nho EY; Hwang IM; Khan N; Jamila N; Kim KS
    J Sci Food Agric; 2019 Mar; 99(4):1870-1879. PubMed ID: 30264403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing arsenic in human toenail clippings using portable X-ray fluorescence.
    Fleming DEB; Crook SL; Evans CT; Nader MN; Atia M; Hicks JMT; Sweeney E; McFarlane CR; Kim JS; Keltie E; Adisesh A
    Appl Radiat Isot; 2021 Jan; 167():109491. PubMed ID: 33121893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of Heavy Metals in a Variety of Cannabis and Cannabis-Derived Products, First Action 2021.03.
    Nelson J; Jones C; Heckle S; Anderson L
    J AOAC Int; 2022 Oct; 105(6):1640-1651. PubMed ID: 34951636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of methods and materials for the analysis of leaded wipes.
    Harper M; Hallmark TS; Bartolucci AA
    J Environ Monit; 2002 Dec; 4(6):1025-33. PubMed ID: 12509061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of a field portable X-Ray fluorescence analyzer to determine the concentration of lead and other metals in soil samples.
    Clark S; Menrath W; Chen M; Roda S; Succop P
    Ann Agric Environ Med; 1999; 6(1):27-32. PubMed ID: 10384212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of XRFS and ICP-OES methods for soil trace metal analyses in a mining impacted agricultural watershed.
    Sikora AL; Maguire LW; Nairn RW; Knox RC
    Environ Monit Assess; 2021 Jul; 193(8):490. PubMed ID: 34258666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using XRF and ICP-OES in Biosorption Studies.
    Chojnacka K; Samoraj M; Tuhy Ł; Michalak I; Mironiuk M; Mikulewicz M
    Molecules; 2018 Aug; 23(8):. PubMed ID: 30126247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Portable XRF analysis of occupational air filter samples from different workplaces using different samplers: final results, summary and conclusions.
    Harper M; Pacolay B; Hintz P; Bartley DL; Slaven JE; Andrew ME
    J Environ Monit; 2007 Nov; 9(11):1263-70. PubMed ID: 17968454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of X-ray fluorescence and wet chemical analysis for lead on air filters from different personal samplers used in a secondary lead smelter/solder manufacturer.
    Harper M; Pacolay B
    J Environ Monit; 2006 Jan; 8(1):140-6. PubMed ID: 16395471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of in vivo toenail measurements of manganese and mercury using a portable X-ray fluorescence device.
    Specht AJ; Zhang X; Young A; Nguyen VT; Christiani DC; Ceballos DM; Allen JG; Weuve J; Nie LH; Weisskopf MG
    J Expo Sci Environ Epidemiol; 2022 May; 32(3):427-433. PubMed ID: 34211112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The microwave induced plasma with optical emission spectrometry (MIP-OES) in 23 elements determination in geological samples.
    Niedzielski P; Kozak L; Wachelka M; Jakubowski K; Wybieralska J
    Talanta; 2015 Jan; 132():591-9. PubMed ID: 25476349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Arsenic in dried baby shrimp (
    Guimarães D; Roberts AA; Tehrani MW; Huang R; Smieska L; Woll AR; Lin S; Parsons PJ
    J Anal At Spectrom; 2018 Oct; 33(10):1616-1630. PubMed ID: 32624635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Online X-ray Fluorescence (XRF) Analysis of Heavy Metals in Pulverized Coal on a Conveyor Belt.
    Yan Z; XinLei Z; WenBao J; Qing S; YongSheng L; DaQian H; Da C
    Appl Spectrosc; 2016 Feb; 70(2):272-8. PubMed ID: 26787706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of a novel portable x-ray fluorescence screening tool for detection of arsenic exposure.
    McIver DJ; VanLeeuwen JA; Knafla AL; Campbell JA; Alexander KM; Gherase MR; Guernsey JR; Fleming DE
    Physiol Meas; 2015 Dec; 36(12):2443-59. PubMed ID: 26536141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.