These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 339948)

  • 1. Possible site-specific reagent for the general amino acid transport system of Saccharomyces cerevisiae.
    Larimore FS; Roon RJ
    Biochemistry; 1978 Feb; 17(3):431-6. PubMed ID: 339948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane proteins associated with amino acid transport by yeast (Saccharomyces cerevisiae).
    Woodward JR; Kornberg HL
    Biochem J; 1980 Nov; 192(2):659-64. PubMed ID: 7016114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport of L-tryptophan in Saccharomyces cerevisiae.
    Kotyk A; Dvoráková M
    Folia Microbiol (Praha); 1990; 35(3):209-17. PubMed ID: 2210491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport and metabolism of N-delta-chloroacetyl-L-ornithine by Saccharomyces cerevisiae.
    Larimore FS; Kuisk I; Korkowski PM; Roon RJ
    Arch Biochem Biophys; 1980 Oct; 204(1):234-40. PubMed ID: 7000006
    [No Abstract]   [Full Text] [Related]  

  • 5. N-ω-chloroacetyl-L-ornithine has in-vitro activity against cancer cell lines and in-vivo activity against ascitic and solid tumors.
    Vargas-Ramírez AL; Medina-Enríquez MM; Cordero-Rodríguez NI; Ruiz-Cuello T; Aguilar-Faisal L; Trujillo-Ferrara JG; Alcántara-Farfán V; Rodríguez-Páez L
    Anticancer Drugs; 2016 Jul; 27(6):508-18. PubMed ID: 26918391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N-ω-chloroacetyl-l-ornithine, a new competitive inhibitor of ornithine decarboxylase, induces selective growth inhibition and cytotoxicity on human cancer cells versus normal cells.
    Medina-Enríquez MM; Alcántara-Farfán V; Aguilar-Faisal L; Trujillo-Ferrara JG; Rodríguez-Páez L; Vargas-Ramírez AL
    J Enzyme Inhib Med Chem; 2015 Jun; 30(3):345-53. PubMed ID: 24939101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of tryptophan transport in human placental brush-border membrane vesicles.
    Ganapathy ME; Leibach FH; Mahesh VB; Howard JC; Devoe LD; Ganapathy V
    Biochem J; 1986 Aug; 238(1):201-8. PubMed ID: 3800932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between thyroid hormone transport and neutral amino acid transport in JAR human choriocarcinoma cells.
    Prasad PD; Leibach FH; Mahesh VB; Ganapathy V
    Endocrinology; 1994 Feb; 134(2):574-81. PubMed ID: 8299556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of dipeptide transport in Saccharomyces cerevisiae by micromolar amino acid concentrations.
    Island MD; Naider F; Becker JM
    J Bacteriol; 1987 May; 169(5):2132-6. PubMed ID: 3553158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inactivation of the thiamine transport system in Saccharomyces cerevisiae with O-bromoacetylthiamine.
    Nishimura H; Sempuku K; Nosaka K; Iwashima A
    Arch Biochem Biophys; 1988 Oct; 266(1):248-53. PubMed ID: 3052299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional analysis of human aromatic amino acid transporter MCT10/TAT1 using the yeast Saccharomyces cerevisiae.
    Uemura S; Mochizuki T; Kurosaka G; Hashimoto T; Masukawa Y; Abe F
    Biochim Biophys Acta Biomembr; 2017 Oct; 1859(10):2076-2085. PubMed ID: 28754537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tryptophan transport through transport system T in the human erythrocyte, the Ehrlich cell and the rat intestine.
    López-Burillo S; García-Sancho J; Herreros B
    Biochim Biophys Acta; 1985 Oct; 820(1):85-94. PubMed ID: 4052418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphatidylserine synthesis required for the maximal tryptophan transport activity in Saccharomyces cerevisiae.
    Nakamura H; Miura K; Fukuda Y; Shibuya I; Ohta A; Takagi M
    Biosci Biotechnol Biochem; 2000 Jan; 64(1):167-72. PubMed ID: 10705462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GABA uptake in a Saccharomyces cerevisiae strain.
    Bermúdez Moretti M; Correa García S; Ramos EH; Batlle A
    Cell Mol Biol (Noisy-le-grand); 1995 Sep; 41(6):843-9. PubMed ID: 8535178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amino acid uptake by yeasts. IV. Effect of thiol reagents on L-leucine transport in Saccharomyces cerevisiae.
    Ramos EH; De Bongioanni LC; Wainer SR; Stoppani AO
    Biochim Biophys Acta; 1983 Jun; 731(2):361-72. PubMed ID: 6342674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterisation of L-tryptophan transporters in human placenta: a comparison of brush border and basal membrane vesicles.
    Kudo Y; Boyd CA
    J Physiol; 2001 Mar; 531(Pt 2):405-16. PubMed ID: 11230513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activity of the yeast Tat2p tryptophan permease is sensitive to the anti-tumor agent 4-phenylbutyrate.
    Liu M; Brusilow WS; Needleman R
    Curr Genet; 2004 Nov; 46(5):256-68. PubMed ID: 15490173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Basic and neutral amino acid transport in Aspergillus nidulans.
    Piotrowska M; Stepień PP; Bartnik E; Zakrzewska E
    J Gen Microbiol; 1976 Jan; 92(1):89-96. PubMed ID: 1466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Possible role of histidine in the L-proline transport system of Saccharomyces cerevisiae.
    Horák J
    Biochim Biophys Acta; 1986 Nov; 862(2):407-12. PubMed ID: 3535892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of the Fenton reagent on transport in yeast.
    Khansuwan U; Kotyk A
    Folia Microbiol (Praha); 2000; 45(6):515-20. PubMed ID: 11501417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.