These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 33994912)
1. Automatic Detection of Fiducial Landmarks Toward the Development of an Application for Digitizing the Locations of EEG Electrodes: Occipital Structure Sensor-Based Work. Gallego Martínez EE; González Mitjans A; Garea-Llano E; Bringas-Vega ML; Valdes-Sosa PA Front Neurosci; 2021; 15():526257. PubMed ID: 33994912 [TBL] [Abstract][Full Text] [Related]
2. Comparison Study of Extraction Accuracy of 3D Facial Anatomical Landmarks Based on Non-Rigid Registration of Face Template. Wen A; Zhu Y; Xiao N; Gao Z; Zhang Y; Wang Y; Wang S; Zhao Y Diagnostics (Basel); 2023 Mar; 13(6):. PubMed ID: 36980394 [TBL] [Abstract][Full Text] [Related]
3. More Reliable EEG Electrode Digitizing Methods Can Reduce Source Estimation Uncertainty, but Current Methods Already Accurately Identify Brodmann Areas. Shirazi SY; Huang HJ Front Neurosci; 2019; 13():1159. PubMed ID: 31787866 [TBL] [Abstract][Full Text] [Related]
4. Spatial localization of EEG electrodes using 3D scanning. Taberna GA; Marino M; Ganzetti M; Mantini D J Neural Eng; 2019 Apr; 16(2):026020. PubMed ID: 30634182 [TBL] [Abstract][Full Text] [Related]
5. Photogrammetry-Based Head Digitization for Rapid and Accurate Localization of EEG Electrodes and MEG Fiducial Markers Using a Single Digital SLR Camera. Clausner T; Dalal SS; Crespo-García M Front Neurosci; 2017; 11():264. PubMed ID: 28559791 [TBL] [Abstract][Full Text] [Related]
6. A fully automatic fiducial detection and correspondence establishing method for online C-arm calibration. Sun W; Zou X; Zheng G Int J Comput Assist Radiol Surg; 2024 May; ():. PubMed ID: 38730187 [TBL] [Abstract][Full Text] [Related]
7. A knowledge-based algorithm for automatic detection of cephalometric landmarks on CBCT images. Gupta A; Kharbanda OP; Sardana V; Balachandran R; Sardana HK Int J Comput Assist Radiol Surg; 2015 Nov; 10(11):1737-52. PubMed ID: 25847662 [TBL] [Abstract][Full Text] [Related]
8. EEG-MRI co-registration and sensor labeling using a 3D laser scanner. Koessler L; Cecchin T; Caspary O; Benhadid A; Vespignani H; Maillard L Ann Biomed Eng; 2011 Mar; 39(3):983-95. PubMed ID: 21140291 [TBL] [Abstract][Full Text] [Related]
9. A new method for automatic tracking of facial landmarks in 3D motion captured images (4D). Al-Anezi T; Khambay B; Peng MJ; O'Leary E; Ju X; Ayoub A Int J Oral Maxillofac Surg; 2013 Jan; 42(1):9-18. PubMed ID: 23218511 [TBL] [Abstract][Full Text] [Related]
10. A semi-automatic method to determine electrode positions and labels from gel artifacts in EEG/fMRI-studies. de Munck JC; van Houdt PJ; Verdaasdonk RM; Ossenblok PP Neuroimage; 2012 Jan; 59(1):399-403. PubMed ID: 21784161 [TBL] [Abstract][Full Text] [Related]
11. Robust automatic detection and removal of fiducial projections in fluoroscopy images: an integrated solution. Zheng G; Zhang X Med Eng Phys; 2009 Jun; 31(5):571-80. PubMed ID: 19117788 [TBL] [Abstract][Full Text] [Related]
12. Automatic marker detection and 3D position reconstruction using cine EPID images for SBRT verification. Park SJ; Ionascu D; Hacker F; Mamon H; Berbeco R Med Phys; 2009 Oct; 36(10):4536-46. PubMed ID: 19928085 [TBL] [Abstract][Full Text] [Related]
13. Prediction of obstructive sleep apnea using facial landmarks. Tabatabaei Balaei A; Sutherland K; Cistulli P; de Chazal P Physiol Meas; 2018 Sep; 39(9):094004. PubMed ID: 30117811 [TBL] [Abstract][Full Text] [Related]
14. A new markerless patient-to-image registration method using a portable 3D scanner. Fan Y; Jiang D; Wang M; Song Z Med Phys; 2014 Oct; 41(10):101910. PubMed ID: 25281962 [TBL] [Abstract][Full Text] [Related]
15. Joint Face Alignment and 3D Face Reconstruction with Application to Face Recognition. Liu F; Zhao Q; Liu X; Zeng D IEEE Trans Pattern Anal Mach Intell; 2020 Mar; 42(3):664-678. PubMed ID: 30530314 [TBL] [Abstract][Full Text] [Related]
16. An Automatic 3D Facial Landmarking Algorithm Using 2D Gabor Wavelets. de Jong MA; Wollstein A; Ruff C; Dunaway D; Hysi P; Spector T; Fan Liu ; Niessen W; Koudstaal MJ; Kayser M; Wolvius EB; Bohringer S IEEE Trans Image Process; 2016 Feb; 25(2):580-8. PubMed ID: 26540684 [TBL] [Abstract][Full Text] [Related]
17. Automatic detection of anatomical landmarks on the knee joint using MRI data. Xue N; Doellinger M; Ho CP; Surowiec RK; Schwarz R J Magn Reson Imaging; 2015 Jan; 41(1):183-92. PubMed ID: 24431181 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of CyberKnife® Fiducial Tracking Limitations to Assist Targeting Accuracy: A Phantom Study with Fiducial Displacement. Goldsmith C; Green MM; Middleton B; Cowley I; Robinson A; Plowman NP; Price PM Cureus; 2018 Oct; 10(10):e3523. PubMed ID: 30648058 [TBL] [Abstract][Full Text] [Related]
19. Robust automatic detection and removal of fiducial projections in fluoroscopy images: an integrated solution. Zhang X; Zheng G Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():78-81. PubMed ID: 19162598 [TBL] [Abstract][Full Text] [Related]
20. Fast, accurate, and robust automatic marker detection for motion correction based on oblique kV or MV projection image pairs. Slagmolen P; Hermans J; Maes F; Budiharto T; Haustermans K; van den Heuvel F Med Phys; 2010 Apr; 37(4):1554-64. PubMed ID: 20443476 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]