BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

402 related articles for article (PubMed ID: 33995458)

  • 1. The Role of Membranes and Lipid-Protein Interactions in the Mg-Branch of Tetrapyrrole Biosynthesis.
    Solymosi K; Mysliwa-Kurdziel B
    Front Plant Sci; 2021; 12():663309. PubMed ID: 33995458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of prolamellar-body-like ultrastructures in etiolated cyanobacterial cells overexpressing light-dependent protochlorophyllide oxidoreductase in Leptolyngbya boryana.
    Yamamoto H; Kojima-Ando H; Ohki K; Fujita Y
    J Gen Appl Microbiol; 2020 Jun; 66(2):129-139. PubMed ID: 32238622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light dependent protochlorophyllide oxidoreductase: a succinct look.
    Vedalankar P; Tripathy BC
    Physiol Mol Biol Plants; 2024 May; 30(5):719-731. PubMed ID: 38846463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monogalactosyldiacylglycerol Facilitates Synthesis of Photoactive Protochlorophyllide in Etioplasts.
    Fujii S; Kobayashi K; Nagata N; Masuda T; Wada H
    Plant Physiol; 2017 Aug; 174(4):2183-2198. PubMed ID: 28655777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Initial stages of angiosperm greening monitored by low-temperature fluorescence spectra and fluorescence lifetimes.
    Mysliwa-Kurdziel B; Stecka A; Strzalka K
    Methods Mol Biol; 2012; 875():231-9. PubMed ID: 22573443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anionic lipids facilitate membrane development and protochlorophyllide biosynthesis in etioplasts.
    Yoshihara A; Kobayashi K; Nagata N; Fujii S; Wada H; Kobayashi K
    Plant Physiol; 2024 Feb; 194(3):1692-1704. PubMed ID: 37962588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Light-induced reduction of protochlorophyllide in angiosperms and chloroplast development].
    Myśliwa-Kurdziel B; Strzałka K
    Postepy Biochem; 2010; 56(4):418-26. PubMed ID: 21473046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic product formation impairs both the chloroplast receptor-binding function as well as translocation competence of the NADPH: protochlorophyllide oxidoreductase, a nuclear-encoded plastid precursor protein.
    Reinbothe S; Reinbothe C; Runge S; Apel K
    J Cell Biol; 1995 Apr; 129(2):299-308. PubMed ID: 7721935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Etioplast differentiation in arabidopsis: both PORA and PORB restore the prolamellar body and photoactive protochlorophyllide-F655 to the cop1 photomorphogenic mutant.
    Sperling U; Franck F; van Cleve B; Frick G; Apel K; Armstrong GA
    Plant Cell; 1998 Feb; 10(2):283-96. PubMed ID: 9490750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Digalactosyldiacylglycerol Is Essential for Organization of the Membrane Structure in Etioplasts.
    Fujii S; Kobayashi K; Nagata N; Masuda T; Wada H
    Plant Physiol; 2018 Aug; 177(4):1487-1497. PubMed ID: 29946018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photocatalytic LPOR forms helical lattices that shape membranes for chlorophyll synthesis.
    Nguyen HC; Melo AA; Kruk J; Frost A; Gabruk M
    Nat Plants; 2021 Apr; 7(4):437-444. PubMed ID: 33875834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. chlB requirement for chlorophyll biosynthesis under short photoperiod in Marchantia polymorpha L.
    Ueda M; Tanaka A; Sugimoto K; Shikanai T; Nishimura Y
    Genome Biol Evol; 2014 Mar; 6(3):620-8. PubMed ID: 24586029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNAi based simultaneous silencing of all forms of light-dependent NADPH:protochlorophyllide oxidoreductase genes result in the accumulation of protochlorophyllide in tobacco (Nicotiana tabacum).
    Talaat NB
    Plant Physiol Biochem; 2013 Oct; 71():31-6. PubMed ID: 23867601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual role of the active site 'lid' regions of protochlorophyllide oxidoreductase in photocatalysis and plant development.
    Zhang S; Godwin ARF; Taylor A; Hardman SJO; Jowitt TA; Johannissen LO; Hay S; Baldock C; Heyes DJ; Scrutton NS
    FEBS J; 2021 Jan; 288(1):175-189. PubMed ID: 32866986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of light-independent protochlorophyllide oxidoreductase.
    Vedalankar P; Tripathy BC
    Protoplasma; 2019 Mar; 256(2):293-312. PubMed ID: 30291443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of NADPH:protochlorophyllide oxidoreductases A and B: a branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsis thaliana.
    Armstrong GA; Runge S; Frick G; Sperling U; Apel K
    Plant Physiol; 1995 Aug; 108(4):1505-17. PubMed ID: 7659751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of etioplast pigment-protein complexes, inner membrane architecture, and protochlorophyllide a chemical heterogeneity by light-dependent NADPH:protochlorophyllide oxidoreductases A and B.
    Franck F; Sperling U; Frick G; Pochert B; van Cleve B; Apel K; Armstrong GA
    Plant Physiol; 2000 Dec; 124(4):1678-96. PubMed ID: 11115885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualization and characterization of prolamellar bodies with atomic force microscopy.
    Grzyb JM; Solymosi K; Strzałka K; Mysliwa-Kurdziel B
    J Plant Physiol; 2013 Sep; 170(14):1217-27. PubMed ID: 23777838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protochlorophyllide reduction: a key step in the greening of plants.
    Fujita Y
    Plant Cell Physiol; 1996 Jun; 37(4):411-21. PubMed ID: 8759912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of Thylakoid Lipids in Protochlorophyllide Oxidoreductase Activation: Allosteric Mechanism Elucidated by a Computational Study.
    Liu R; Wang L; Meng Y; Li F; Nie H; Lu H
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.