These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 33996115)

  • 1. Natural Frequency Method: estimating the preferred walking speed of
    van Bijlert PA; van Soest AJ'; Schulp AS
    R Soc Open Sci; 2021 Apr; 8(4):201441. PubMed ID: 33996115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating the running abilities of
    Sellers WI; Pond SB; Brassey CA; Manning PL; Bates KT
    PeerJ; 2017; 5():e3420. PubMed ID: 28740745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correction to 'Natural Frequency Method: estimating the preferred walking speed of
    van Bijlert PA; van Soest AJ'; Schulp AS
    R Soc Open Sci; 2021 Jul; 8(7):211139. PubMed ID: 34295534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Step time asymmetry but not step length asymmetry is adapted to optimize energy cost of split-belt treadmill walking.
    Stenum J; Choi JT
    J Physiol; 2020 Sep; 598(18):4063-4078. PubMed ID: 32662881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tyrannosaurus was not a fast runner.
    Hutchinson JR; Garcia M
    Nature; 2002 Feb; 415(6875):1018-21. PubMed ID: 11875567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A computational analysis of limb and body dimensions in Tyrannosaurus rex with implications for locomotion, ontogeny, and growth.
    Hutchinson JR; Bates KT; Molnar J; Allen V; Makovicky PJ
    PLoS One; 2011; 6(10):e26037. PubMed ID: 22022500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Economical and preferred walking speed using body weight support apparatus with a spring-like characteristics.
    Abe D; Sakata S; Motoyama K; Toyota N; Nishizono H; Horiuchi M
    BMC Sports Sci Med Rehabil; 2021 Sep; 13(1):107. PubMed ID: 34488873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of preferred walking speed on treadmill may lead to high oxygen cost on treadmill walking.
    Dal U; Erdogan T; Resitoglu B; Beydagi H
    Gait Posture; 2010 Mar; 31(3):366-9. PubMed ID: 20129785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction between step-to-step variability and metabolic cost of transport during human walking.
    Rock CG; Marmelat V; Yentes JM; Siu KC; Takahashi KZ
    J Exp Biol; 2018 Nov; 221(Pt 22):. PubMed ID: 30237239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gait-specific metabolic costs and preferred speeds in ring-tailed lemurs (Lemur catta), with implications for the scaling of locomotor costs.
    O'Neill MC
    Am J Phys Anthropol; 2012 Nov; 149(3):356-64. PubMed ID: 22976581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The metabolic cost of changing walking speeds is significant, implies lower optimal speeds for shorter distances, and increases daily energy estimates.
    Seethapathi N; Srinivasan M
    Biol Lett; 2015 Sep; 11(9):20150486. PubMed ID: 26382072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The tail of Tyrannosaurus: reassessing the size and locomotive importance of the M. caudofemoralis in non-avian theropods.
    Persons WS; Currie PJ
    Anat Rec (Hoboken); 2011 Jan; 294(1):119-31. PubMed ID: 21157923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal speeds for walking and running, and walking on a moving walkway.
    Srinivasan M
    Chaos; 2009 Jun; 19(2):026112. PubMed ID: 19566272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of treadmill and overground walking on preferred walking speed and gait kinematics in healthy, physically active older adults.
    Malatesta D; Canepa M; Menendez Fernandez A
    Eur J Appl Physiol; 2017 Sep; 117(9):1833-1843. PubMed ID: 28687953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The importance of muscle architecture in biomechanical reconstructions of extinct animals: a case study using Tyrannosaurus rex.
    Bates KT; Falkingham PL
    J Anat; 2018 Nov; 233(5):625-635. PubMed ID: 30129185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Determinants of the Preferred Walking Speed in Individuals with Obesity.
    Fernández Menéndez A; Saubade M; Hans D; Millet GP; Malatesta D
    Obes Facts; 2019; 12(5):543-553. PubMed ID: 31505515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Forward dynamic simulation of bipedal walking in the Japanese macaque: investigation of causal relationships among limb kinematics, speed, and energetics of bipedal locomotion in a nonhuman primate.
    Ogihara N; Aoi S; Sugimoto Y; Tsuchiya K; Nakatsukasa M
    Am J Phys Anthropol; 2011 Aug; 145(4):568-80. PubMed ID: 21590751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of elastic ankle exoskeleton stiffness on neuromechanics and energetics of human walking across multiple speeds.
    Nuckols RW; Sawicki GS
    J Neuroeng Rehabil; 2020 Jun; 17(1):75. PubMed ID: 32539840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pelvic and hindlimb musculature of Tyrannosaurus rex (Dinosauria: Theropoda).
    Carrano MT; Hutchinson JR
    J Morphol; 2002 Sep; 253(3):207-28. PubMed ID: 12125061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-objective control in human walking: insight gained through simultaneous degradation of energetic and motor regulation systems.
    McDonald KA; Cusumano JP; Peeling P; Rubenson J
    J R Soc Interface; 2019 Sep; 16(158):20190227. PubMed ID: 31506049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.