BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 33996260)

  • 21. RNA-binding proteins in breast cancer: Biological implications and therapeutic opportunities.
    Wang S; Sun H; Chen G; Wu C; Sun B; Lin J; Lin D; Zeng D; Lin B; Huang G; Lu X; Lin H; Liang Y
    Crit Rev Oncol Hematol; 2024 Mar; 195():104271. PubMed ID: 38272151
    [TBL] [Abstract][Full Text] [Related]  

  • 22. RBPvsMIR: A Computational Pipeline to Identify Competing miRNAs and RNA-Binding Protein Pairs Regulating the Shared Transcripts.
    Zhao X; Chen D; Cai Y; Zhang F; Xu J
    Genes (Basel); 2018 Aug; 9(9):. PubMed ID: 30131454
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Architecture of the Human RNA-Binding Protein Regulatory Network.
    Quattrone A; Dassi E
    iScience; 2019 Nov; 21():706-719. PubMed ID: 31733516
    [TBL] [Abstract][Full Text] [Related]  

  • 24. RNA Binding Motif 5 (RBM5) in the CNS-Moving Beyond Cancer to Harness RNA Splicing to Mitigate the Consequences of Brain Injury.
    Jackson TC; Kochanek PM
    Front Mol Neurosci; 2020; 13():126. PubMed ID: 32765218
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthetic antibodies as tools to probe RNA-binding protein function.
    Laver JD; Ancevicius K; Sollazzo P; Westwood JT; Sidhu SS; Lipshitz HD; Smibert CA
    Mol Biosyst; 2012 Jun; 8(6):1650-7. PubMed ID: 22481296
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inferring RBP-Mediated Regulation in Lung Squamous Cell Carcinoma.
    Lafzi A; Kazan H
    PLoS One; 2016; 11(5):e0155354. PubMed ID: 27186987
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of Prognosis-related Hub RNA Binding Proteins Function through Regulating Metabolic Processes in Tongue Cancer.
    Shen T; Wang M; Wang X
    J Cancer; 2021; 12(8):2230-2242. PubMed ID: 33758601
    [TBL] [Abstract][Full Text] [Related]  

  • 28. rMAPS: RNA map analysis and plotting server for alternative exon regulation.
    Park JW; Jung S; Rouchka EC; Tseng YT; Xing Y
    Nucleic Acids Res; 2016 Jul; 44(W1):W333-8. PubMed ID: 27174931
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mutational landscape of RNA-binding proteins in human cancers.
    Neelamraju Y; Gonzalez-Perez A; Bhat-Nakshatri P; Nakshatri H; Janga SC
    RNA Biol; 2018 Jan; 15(1):115-129. PubMed ID: 29023197
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of the Alternative Neural Transcriptome by ELAV/Hu RNA Binding Proteins.
    Wei L; Lai EC
    Front Genet; 2022; 13():848626. PubMed ID: 35281806
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational Identification of Post Translational Modification Regulated RNA Binding Protein Motifs.
    Brown AS; Mohanty BK; Howe PH
    PLoS One; 2015; 10(9):e0137696. PubMed ID: 26368004
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dissecting the expression relationships between RNA-binding proteins and their cognate targets in eukaryotic post-transcriptional regulatory networks.
    Nishtala S; Neelamraju Y; Janga SC
    Sci Rep; 2016 May; 6():25711. PubMed ID: 27161996
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A deep boosting based approach for capturing the sequence binding preferences of RNA-binding proteins from high-throughput CLIP-seq data.
    Li S; Dong F; Wu Y; Zhang S; Zhang C; Liu X; Jiang T; Zeng J
    Nucleic Acids Res; 2017 Aug; 45(14):e129. PubMed ID: 28575488
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Systems Perturbation Analysis of a Large-Scale Signal Transduction Model Reveals Potentially Influential Candidates for Cancer Therapeutics.
    Puniya BL; Allen L; Hochfelder C; Majumder M; Helikar T
    Front Bioeng Biotechnol; 2016; 4():10. PubMed ID: 26904540
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reverse engineering neuron type-specific and type-orthogonal splicing-regulatory networks using single-cell transcriptomes.
    Moakley DF; Campbell M; Anglada-Girotto M; Feng H; Califano A; Au E; Zhang C
    bioRxiv; 2024 Jun; ():. PubMed ID: 38915499
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Revealing the Determinants of Widespread Alternative Splicing Perturbation in Cancer.
    Li Y; Sahni N; Pancsa R; McGrail DJ; Xu J; Hua X; Coulombe-Huntington J; Ryan M; Tychhon B; Sudhakar D; Hu L; Tyers M; Jiang X; Lin SY; Babu MM; Yi S
    Cell Rep; 2017 Oct; 21(3):798-812. PubMed ID: 29045845
    [TBL] [Abstract][Full Text] [Related]  

  • 37. First Identification of RNA-Binding Proteins That Regulate Alternative Exons in the Dystrophin Gene.
    Miro J; Bougé AL; Murauer E; Beyne E; Da Cunha D; Claustres M; Koenig M; Tuffery-Giraud S
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33096920
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genome-wide CRISPR screen identifies HNRNPL as a prostate cancer dependency regulating RNA splicing.
    Fei T; Chen Y; Xiao T; Li W; Cato L; Zhang P; Cotter MB; Bowden M; Lis RT; Zhao SG; Wu Q; Feng FY; Loda M; He HH; Liu XS; Brown M
    Proc Natl Acad Sci U S A; 2017 Jun; 114(26):E5207-E5215. PubMed ID: 28611215
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Integrated analysis of RNA-binding proteins in human colorectal cancer.
    Fan X; Liu L; Shi Y; Guo F; Wang H; Zhao X; Zhong D; Li G
    World J Surg Oncol; 2020 Aug; 18(1):222. PubMed ID: 32828126
    [TBL] [Abstract][Full Text] [Related]  

  • 40. RNA-Binding Proteins in Cancer: Old Players and New Actors.
    Pereira B; Billaud M; Almeida R
    Trends Cancer; 2017 Jul; 3(7):506-528. PubMed ID: 28718405
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.