BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 33997434)

  • 1. A Review on Design and Mechanical Properties of Additively Manufactured NiTi Implants for Orthopedic Applications.
    Zhang Y; Attarilar S; Wang L; Lu W; Yang J; Fu Y
    Int J Bioprint; 2021; 7(2):340. PubMed ID: 33997434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Additive manufacturing of NiTi shape memory alloy and its industrial applications.
    Dzogbewu TC; de Beer DJ
    Heliyon; 2024 Jan; 10(1):e23369. PubMed ID: 38163186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Porous Scaffold Design for Additive Manufacturing in Orthopedics: A Review.
    Chen H; Han Q; Wang C; Liu Y; Chen B; Wang J
    Front Bioeng Biotechnol; 2020; 8():609. PubMed ID: 32626698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of Bioactive Scaffolds for Orthopedic Applications by Designing Additively Manufactured Titanium Porous Structures: A Critical Review.
    Kiselevskiy MV; Anisimova NY; Kapustin AV; Ryzhkin AA; Kuznetsova DN; Polyakova VV; Enikeev NA
    Biomimetics (Basel); 2023 Nov; 8(7):. PubMed ID: 37999187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Heat Treatment on Repetitively Scanned SLM NiTi Shape Memory Alloy.
    Khoo ZX; An J; Chua CK; Shen YF; Kuo CN; Liu Y
    Materials (Basel); 2018 Dec; 12(1):. PubMed ID: 30587793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functionally graded additive manufacturing for orthopedic applications.
    Rouf S; Malik A; Raina A; Irfan Ul Haq M; Naveed N; Zolfagharian A; Bodaghi M
    J Orthop; 2022; 33():70-80. PubMed ID: 35874041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the Potential of MIM-Manufactured Porous NiTi as a Vascular Drug Delivery Material.
    Zhou Y; Wang T; Lu P; Wan Z; He H; Wang J; Li D; Li Y; Shu C
    Ann Biomed Eng; 2024 Jun; ():. PubMed ID: 38880816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical Properties, Microstructure, and Actuation Behavior of Wire Arc Additive Manufactured Nitinol: Titanium Bimetallic Structures.
    Singh S; Demidova E; Resnina N; Belyaev S; Palani IA; Paul CP; Kumar A; Prashanth KG
    3D Print Addit Manuf; 2024 Feb; 11(1):143-151. PubMed ID: 38389669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NiTi-Cu Bimetallic Structure Fabrication through Wire Arc Additive Manufacturing.
    Singh S; Demidova E; Resnina N; Belyaev S; Iyamperumal PA; Paul CP; Prashanth KG
    Materials (Basel); 2024 Feb; 17(5):. PubMed ID: 38473478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biocompatibility of Advanced Manufactured Titanium Implants-A Review.
    Sidambe AT
    Materials (Basel); 2014 Dec; 7(12):8168-8188. PubMed ID: 28788296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tribo-corrosive behavior of additive manufactured parts for orthopaedic applications.
    Malik A; Rouf S; Ul Haq MI; Raina A; Valerga Puerta AP; Sagbas B; Ruggiero A
    J Orthop; 2022; 34():49-60. PubMed ID: 36016865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wire Arc Additive Manufacturing of NiTi 4D Structures: Influence of Interlayer Delay.
    Singh S; Palani IA; Paul CP; Funk A; Konda Gokuldoss P
    3D Print Addit Manuf; 2024 Feb; 11(1):152-162. PubMed ID: 38389695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomedical Porous Shape Memory Alloys for Hard-Tissue Replacement Materials.
    Yuan B; Zhu M; Chung CY
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30217097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Porous metal implants: processing, properties, and challenges.
    Bandyopadhyay A; Mitra I; Avila JD; Upadhyayula M; Bose S
    Int J Extrem Manuf; 2023 Sep; 5(3):032014. PubMed ID: 37476350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Critical Review of Comparative Study of Selective Laser Melting and Investment Casting for Thin-Walled Parts.
    Dejene ND; Lemu HG; Gutema EM
    Materials (Basel); 2023 Nov; 16(23):. PubMed ID: 38068089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Review on Additive Manufacturing Methods for NiTi Shape Memory Alloy Production.
    Kubášová K; Drátovská V; Losertová M; Salvetr P; Kopelent M; Kořínek F; Havlas V; Džugan J; Daniel M
    Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical Behavior of Selective Laser Melting (SLM) Parts with Varying Thicknesses in a Saline Environment under Different Exposure Times.
    Akhtar M; Samiuddin M; Muzamil M; Siddiqui MA; Khan R; Alsaleh NA; Siddiqui AK; Djuansjah J; Majeed A
    Materials (Basel); 2024 Apr; 17(9):. PubMed ID: 38730768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Additively Manufactured NiTi and NiTiHf Alloys: Estimating Service Life in High-Temperature Oxidation.
    Dabbaghi H; Safaei K; Nematollahi M; Bayati P; Elahinia M
    Materials (Basel); 2020 May; 13(9):. PubMed ID: 32370079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Additive manufacturing technique-designed metallic porous implants for clinical application in orthopedics.
    Gao C; Wang C; Jin H; Wang Z; Li Z; Shi C; Leng Y; Yang F; Liu H; Wang J
    RSC Adv; 2018 Jul; 8(44):25210-25227. PubMed ID: 35542139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Review of
    Peng X; Kong L; An H; Dong G
    3D Print Addit Manuf; 2023 Jun; 10(3):438-466. PubMed ID: 37346185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.