These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 33997475)

  • 1. Relative light sensitivities of four retinal hemi-fields for suppressing the synthesis of melatonin at night.
    Rea MS; Nagare R; Figueiro MG
    Neurobiol Sleep Circadian Rhythms; 2021 May; 10():100066. PubMed ID: 33997475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial sensitivity of human circadian response: Melatonin suppression from on-axis and off-axis light exposures.
    Nagare R; Rea MS; Figueiro MG
    Neurobiol Sleep Circadian Rhythms; 2021 Nov; 11():100071. PubMed ID: 34286162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inferior retinal light exposure is more effective than superior retinal exposure in suppressing melatonin in humans.
    Glickman G; Hanifin JP; Rollag MD; Wang J; Cooper H; Brainard GC
    J Biol Rhythms; 2003 Feb; 18(1):71-9. PubMed ID: 12568246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light emitting diodes can be used to phase delay the melatonin rhythm.
    Wright HR; Lack LC; Partridge KJ
    J Pineal Res; 2001 Nov; 31(4):350-5. PubMed ID: 11703565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of light wavelength on suppression and phase delay of the melatonin rhythm.
    Wright HR; Lack LC
    Chronobiol Int; 2001 Sep; 18(5):801-8. PubMed ID: 11763987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applying Melanopic Lux to Measure Biological Light Effects on Melatonin Suppression and Subjective Sleepiness.
    Nowozin C; Wahnschaffe A; Rodenbeck A; de Zeeuw J; Hädel S; Kozakov R; Schöpp H; Münch M; Kunz D
    Curr Alzheimer Res; 2017; 14(10):1042-1052. PubMed ID: 28545361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circadian effectiveness of two polychromatic lights in suppressing human nocturnal melatonin.
    Figueiro MG; Rea MS; Bullough JD
    Neurosci Lett; 2006 Oct; 406(3):293-7. PubMed ID: 16930839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indirect blue light does not suppress nocturnal salivary melatonin in humans in an automobile setting.
    Lerchl A; Schindler C; Eichhorn K; Kley F; Erren TC
    J Pineal Res; 2009 Sep; 47(2):143-146. PubMed ID: 19555449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nasal versus temporal illumination of the human retina: effects on core body temperature, melatonin, and circadian phase.
    Rüger M; Gordijn MC; Beersma DG; de Vries B; Daan S
    J Biol Rhythms; 2005 Feb; 20(1):60-70. PubMed ID: 15654071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting melatonin suppression by light in humans: Unifying photoreceptor-based equivalent daylight illuminances, spectral composition, timing and duration of light exposure.
    Giménez MC; Stefani O; Cajochen C; Lang D; Deuring G; Schlangen LJM
    J Pineal Res; 2022 Mar; 72(2):e12786. PubMed ID: 34981572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nocturnal Melatonin Suppression by Adolescents and Adults for Different Levels, Spectra, and Durations of Light Exposure.
    Nagare R; Rea MS; Plitnick B; Figueiro MG
    J Biol Rhythms; 2019 Apr; 34(2):178-194. PubMed ID: 30803301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light level and duration of exposure determine the impact of self-luminous tablets on melatonin suppression.
    Wood B; Rea MS; Plitnick B; Figueiro MG
    Appl Ergon; 2013 Mar; 44(2):237-40. PubMed ID: 22850476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential effects of light wavelength in phase advancing the melatonin rhythm.
    Wright HR; Lack LC; Kennaway DJ
    J Pineal Res; 2004 Mar; 36(2):140-4. PubMed ID: 14962066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Melatonin suppression is exquisitely sensitive to light and primarily driven by melanopsin in humans.
    Prayag AS; Najjar RP; Gronfier C
    J Pineal Res; 2019 May; 66(4):e12562. PubMed ID: 30697806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A train of blue light pulses delivered through closed eyelids suppresses melatonin and phase shifts the human circadian system.
    Figueiro MG; Bierman A; Rea MS
    Nat Sci Sleep; 2013; 5():133-41. PubMed ID: 24124400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preliminary evidence for a change in spectral sensitivity of the circadian system at night.
    Figueiro MG; Bullough JD; Parsons RH; Rea MS
    J Circadian Rhythms; 2005 Dec; 3():14. PubMed ID: 16336697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of different colors of light on melatonin suppression and expression analysis of Aanat1 and melanopsin in the eye of a tropical damselfish.
    Takeuchi Y; Imamura S; Sawada Y; Hur SP; Takemura A
    Gen Comp Endocrinol; 2014 Aug; 204():158-65. PubMed ID: 24859252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High sensitivity of the human circadian melatonin rhythm to resetting by short wavelength light.
    Lockley SW; Brainard GC; Czeisler CA
    J Clin Endocrinol Metab; 2003 Sep; 88(9):4502-5. PubMed ID: 12970330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retinal mechanisms determine the subadditive response to polychromatic light by the human circadian system.
    Figueiro MG; Bierman A; Rea MS
    Neurosci Lett; 2008 Jun; 438(2):242-5. PubMed ID: 18479818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The effect of light with various wavelengths and impulse times on nocturnal suppression of N'acetyltransferase activation by serotonin in the pineal gland of the chick].
    Jarmak A; Zawilska JB; Nowak JZ
    Klin Oczna; 1996; 98(6):417-22. PubMed ID: 9340413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.