These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

450 related articles for article (PubMed ID: 33997485)

  • 41. Bioprinting and its applications in tissue engineering and regenerative medicine.
    Aljohani W; Ullah MW; Zhang X; Yang G
    Int J Biol Macromol; 2018 Feb; 107(Pt A):261-275. PubMed ID: 28870749
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bio-resin for high resolution lithography-based biofabrication of complex cell-laden constructs.
    Lim KS; Levato R; Costa PF; Castilho MD; Alcala-Orozco CR; van Dorenmalen KMA; Melchels FPW; Gawlitta D; Hooper GJ; Malda J; Woodfield TBF
    Biofabrication; 2018 May; 10(3):034101. PubMed ID: 29693552
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Controlling Structure with Injectable Biomaterials to Better Mimic Tissue Heterogeneity and Anisotropy.
    Babu S; Albertino F; Omidinia Anarkoli A; De Laporte L
    Adv Healthc Mater; 2021 Jun; 10(11):e2002221. PubMed ID: 33951341
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Engineering Hydrogels for the Development of Three-Dimensional In Vitro Models.
    Maji S; Lee H
    Int J Mol Sci; 2022 Feb; 23(5):. PubMed ID: 35269803
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Alginate Hydrogels: A Tool for 3D Cell Encapsulation, Tissue Engineering, and Biofabrication.
    Bonani W; Cagol N; Maniglio D
    Adv Exp Med Biol; 2020; 1250():49-61. PubMed ID: 32601937
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Alginate hydrogels for bone tissue engineering, from injectables to bioprinting: A review.
    Hernández-González AC; Téllez-Jurado L; Rodríguez-Lorenzo LM
    Carbohydr Polym; 2020 Feb; 229():115514. PubMed ID: 31826429
    [TBL] [Abstract][Full Text] [Related]  

  • 47. 3D Bioprinting of Human Tissues: Biofabrication, Bioinks, and Bioreactors.
    Zhang J; Wehrle E; Rubert M; Müller R
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33921417
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Supramolecular Peptide Nanofiber Hydrogels for Bone Tissue Engineering: From Multihierarchical Fabrications to Comprehensive Applications.
    Hao Z; Li H; Wang Y; Hu Y; Chen T; Zhang S; Guo X; Cai L; Li J
    Adv Sci (Weinh); 2022 Apr; 9(11):e2103820. PubMed ID: 35128831
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The role of poly(2-alkyl-2-oxazoline)s in hydrogels and biofabrication.
    Trachsel L; Zenobi-Wong M; Benetti EM
    Biomater Sci; 2021 Apr; 9(8):2874-2886. PubMed ID: 33729230
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A three-dimensional bioprinting system for use with a hydrogel-based biomaterial and printing parameter characterization.
    Song SJ; Choi J; Park YD; Lee JJ; Hong SY; Sun K
    Artif Organs; 2010 Nov; 34(11):1044-8. PubMed ID: 21092048
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nanocomposite bioinks for 3D bioprinting.
    Cai Y; Chang SY; Gan SW; Ma S; Lu WF; Yen CC
    Acta Biomater; 2022 Oct; 151():45-69. PubMed ID: 35970479
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biofabrication of small diameter tissue-engineered vascular grafts.
    Weekes A; Bartnikowski N; Pinto N; Jenkins J; Meinert C; Klein TJ
    Acta Biomater; 2022 Jan; 138():92-111. PubMed ID: 34781026
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In Situ Cross-Linkable Hydrogels as a Dynamic Matrix for Tissue Regenerative Medicine.
    Park KM; Park KD
    Tissue Eng Regen Med; 2018 Oct; 15(5):547-557. PubMed ID: 30603578
    [TBL] [Abstract][Full Text] [Related]  

  • 54. FRESH bioprinting technology for tissue engineering - the influence of printing process and bioink composition on cell behavior and vascularization.
    Kreimendahl F; Kniebs C; Tavares Sobreiro AM; Schmitz-Rode T; Jockenhoevel S; Thiebes AL
    J Appl Biomater Funct Mater; 2021; 19():22808000211028808. PubMed ID: 34282976
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Tuning Superfast Curing Thiol-Norbornene-Functionalized Gelatin Hydrogels for 3D Bioprinting.
    Göckler T; Haase S; Kempter X; Pfister R; Maciel BR; Grimm A; Molitor T; Willenbacher N; Schepers U
    Adv Healthc Mater; 2021 Jul; 10(14):e2100206. PubMed ID: 34145799
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Click Chemistry-Based Injectable Hydrogels and Bioprinting Inks for Tissue Engineering Applications.
    Gopinathan J; Noh I
    Tissue Eng Regen Med; 2018 Oct; 15(5):531-546. PubMed ID: 30603577
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fabrication of biomimetic networks using viscous fingering in flexographic printing.
    Brumm P; Fritschen A; Doß L; Dörsam E; Blaeser A
    Biomed Mater; 2022 May; 17(4):. PubMed ID: 35579018
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Digitally Fabricated and Naturally Augmented In Vitro Tissues.
    Duarte Campos DF; De Laporte L
    Adv Healthc Mater; 2021 Jan; 10(2):e2001253. PubMed ID: 33191651
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Engineering bioinks for 3D bioprinting.
    Decante G; Costa JB; Silva-Correia J; Collins MN; Reis RL; Oliveira JM
    Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33662949
    [TBL] [Abstract][Full Text] [Related]  

  • 60. 3D bioprinting and the current applications in tissue engineering.
    Huang Y; Zhang XF; Gao G; Yonezawa T; Cui X
    Biotechnol J; 2017 Aug; 12(8):. PubMed ID: 28675678
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.