BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

631 related articles for article (PubMed ID: 33997497)

  • 1. Bone physiological microenvironment and healing mechanism: Basis for future bone-tissue engineering scaffolds.
    Zhu G; Zhang T; Chen M; Yao K; Huang X; Zhang B; Li Y; Liu J; Wang Y; Zhao Z
    Bioact Mater; 2021 Nov; 6(11):4110-4140. PubMed ID: 33997497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regenerating bone with bioactive glass scaffolds: A review of in vivo studies in bone defect models.
    El-Rashidy AA; Roether JA; Harhaus L; Kneser U; Boccaccini AR
    Acta Biomater; 2017 Oct; 62():1-28. PubMed ID: 28844964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Composite polymer-bioceramic scaffolds with drug delivery capability for bone tissue engineering.
    Mouriño V; Cattalini JP; Roether JA; Dubey P; Roy I; Boccaccini AR
    Expert Opin Drug Deliv; 2013 Oct; 10(10):1353-65. PubMed ID: 23777443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural medicine delivery from biomedical devices to treat bone disorders: A review.
    Bose S; Sarkar N; Banerjee D
    Acta Biomater; 2021 May; 126():63-91. PubMed ID: 33657451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone Tissue Engineering Scaffolds: Function of Multi-Material Hierarchically Structured Scaffolds.
    Koushik TM; Miller CM; Antunes E
    Adv Healthc Mater; 2023 Apr; 12(9):e2202766. PubMed ID: 36512599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Review on the Role of Wollastonite Biomaterial in Bone Tissue Engineering.
    Zenebe CG
    Biomed Res Int; 2022; 2022():4996530. PubMed ID: 36560965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current state of fabrication technologies and materials for bone tissue engineering.
    Wubneh A; Tsekoura EK; Ayranci C; Uludağ H
    Acta Biomater; 2018 Oct; 80():1-30. PubMed ID: 30248515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Approaches for building bioactive elements into synthetic scaffolds for bone tissue engineering.
    Kesireddy V; Kasper FK
    J Mater Chem B; 2016 Nov; 4(42):6773-6786. PubMed ID: 28133536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel biomimetic tripolymer scaffolds consisting of chitosan, collagen type 1, and hyaluronic acid for bone marrow-derived human mesenchymal stem cells-based bone tissue engineering.
    Mathews S; Bhonde R; Gupta PK; Totey S
    J Biomed Mater Res B Appl Biomater; 2014 Nov; 102(8):1825-34. PubMed ID: 24723571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant molecules reinforce bone repair: Novel insights into phenol-modified bone tissue engineering scaffolds for the treatment of bone defects.
    Chen Y; Gan W; Cheng Z; Zhang A; Shi P; Zhang Y
    Mater Today Bio; 2024 Feb; 24():100920. PubMed ID: 38226013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supercritical CO
    Li S; Song C; Yang S; Yu W; Zhang W; Zhang G; Xi Z; Lu E
    Acta Biomater; 2019 Aug; 94():253-267. PubMed ID: 31154054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards multi-dynamic mechano-biological optimization of 3D-printed scaffolds to foster bone regeneration.
    Metz C; Duda GN; Checa S
    Acta Biomater; 2020 Jan; 101():117-127. PubMed ID: 31669697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioactive Scaffolds Integrated with Liposomal or Extracellular Vesicles for Bone Regeneration.
    Kang M; Lee CS; Lee M
    Bioengineering (Basel); 2021 Oct; 8(10):. PubMed ID: 34677210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomimetic mineralization of novel hydroxyethyl cellulose/soy protein isolate scaffolds promote bone regeneration in vitro and in vivo.
    Wu M; Wu P; Xiao L; Zhao Y; Yan F; Liu X; Xie Y; Zhang C; Chen Y; Cai L
    Int J Biol Macromol; 2020 Nov; 162():1627-1641. PubMed ID: 32781127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining electrical stimulation and tissue engineering to treat large bone defects in a rat model.
    Leppik L; Zhihua H; Mobini S; Thottakkattumana Parameswaran V; Eischen-Loges M; Slavici A; Helbing J; Pindur L; Oliveira KMC; Bhavsar MB; Hudak L; Henrich D; Barker JH
    Sci Rep; 2018 Apr; 8(1):6307. PubMed ID: 29679025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of biomimetic electrospun polymeric biomaterials for bone tissue engineering. A review.
    Chahal S; Kumar A; Hussian FSJ
    J Biomater Sci Polym Ed; 2019 Oct; 30(14):1308-1355. PubMed ID: 31181982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel layered double hydroxides-hydroxyapatite/gelatin bone tissue engineering scaffolds: Fabrication, characterization, and in vivo study.
    Fayyazbakhsh F; Solati-Hashjin M; Keshtkar A; Shokrgozar MA; Dehghan MM; Larijani B
    Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():701-714. PubMed ID: 28482581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current advances for bone regeneration based on tissue engineering strategies.
    Shi R; Huang Y; Ma C; Wu C; Tian W
    Front Med; 2019 Apr; 13(2):160-188. PubMed ID: 30047029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MiRNA-Nanofiber, the Next Generation of Bioactive Scaffolds for Bone Regeneration: A Review.
    Kharaghani D; Kurniwan EB; Khan MQ; Yoshiko Y
    Micromachines (Basel); 2021 Nov; 12(12):. PubMed ID: 34945325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrospun fibrous scaffolds for bone and cartilage tissue generation: recent progress and future developments.
    Holmes B; Castro NJ; Zhang LG; Zussman E
    Tissue Eng Part B Rev; 2012 Dec; 18(6):478-86. PubMed ID: 22738358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.