BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

631 related articles for article (PubMed ID: 33997497)

  • 21. Self-assembling peptide and nHA/CTS composite scaffolds promote bone regeneration through increasing seed cell adhesion.
    Zhang Z; Wu G; Cao Y; Liu C; Jin Y; Wang Y; Yang L; Guo J; Zhu L
    Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():445-454. PubMed ID: 30274077
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Current Approaches to Bone Tissue Engineering: The Interface between Biology and Engineering.
    Li JJ; Ebied M; Xu J; Zreiqat H
    Adv Healthc Mater; 2018 Mar; 7(6):e1701061. PubMed ID: 29280321
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bone Engineering Scaffolds With Exosomes: A Promising Strategy for Bone Defects Repair.
    Zhang M; Li Y; Feng T; Li R; Wang Z; Zhang L; Yin P; Tang P
    Front Bioeng Biotechnol; 2022; 10():920378. PubMed ID: 35782499
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Review: development of clinically relevant scaffolds for vascularised bone tissue engineering.
    Liu Y; Lim J; Teoh SH
    Biotechnol Adv; 2013; 31(5):688-705. PubMed ID: 23142624
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biomimetic Scaffolds for Bone Tissue Engineering.
    Park JY; Park SH; Kim MG; Park SH; Yoo TH; Kim MS
    Adv Exp Med Biol; 2018; 1064():109-121. PubMed ID: 30471029
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design strategies for composite matrix and multifunctional polymeric scaffolds with enhanced bioactivity for bone tissue engineering.
    Kumari S; Katiyar S; Darshna ; Anand A; Singh D; Singh BN; Mallick SP; Mishra A; Srivastava P
    Front Chem; 2022; 10():1051678. PubMed ID: 36518978
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chitosan and gelatin-based electrospun fibers for bone tissue engineering.
    Ranganathan S; Balagangadharan K; Selvamurugan N
    Int J Biol Macromol; 2019 Jul; 133():354-364. PubMed ID: 31002907
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gelatin-alginate-cerium oxide nanocomposite scaffold for bone regeneration.
    Purohit SD; Singh H; Bhaskar R; Yadav I; Chou CF; Gupta MK; Mishra NC
    Mater Sci Eng C Mater Biol Appl; 2020 Nov; 116():111111. PubMed ID: 32806319
    [TBL] [Abstract][Full Text] [Related]  

  • 29. How getting twisted in scaffold design can promote bone regeneration: A fluid-structure interaction evaluation.
    Wang L; Wang J; Chen Q; Li Q; Mendieta JB; Li Z
    J Biomech; 2022 Dec; 145():111359. PubMed ID: 36334321
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibiting the "isolated island" effect in simulated bone defect repair using a hollow structural scaffold design.
    Liu X; Gao J; Liu J; Zhang L; Li M
    Front Bioeng Biotechnol; 2024; 12():1362913. PubMed ID: 38633663
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D-Bioprinting Strategies Based on In Situ Bone-Healing Mechanism for Vascularized Bone Tissue Engineering.
    Park YL; Park K; Cha JM
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33800485
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Emerging Perspectives in Scaffold for Tissue Engineering in Oral Surgery.
    Ceccarelli G; Presta R; Benedetti L; Cusella De Angelis MG; Lupi SM; Rodriguez Y Baena R
    Stem Cells Int; 2017; 2017():4585401. PubMed ID: 28337223
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Challenges in computational fluid dynamics applications for bone tissue engineering.
    Pires T; Dunlop JWC; Fernandes PR; Castro APG
    Proc Math Phys Eng Sci; 2022 Jan; 478(2257):20210607. PubMed ID: 35153613
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cellulose and collagen derived micro-nano structured scaffolds for bone tissue engineering.
    Aravamudhan A; Ramos DM; Nip J; Harmon MD; James R; Deng M; Laurencin CT; Yu X; Kumbar SG
    J Biomed Nanotechnol; 2013 Apr; 9(4):719-31. PubMed ID: 23621034
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of autologous bone marrow stromal cells differentiated on scaffolds for canine tibial bone reconstruction.
    Özdal-Kurt F; Tuğlu I; Vatansever HS; Tong S; Deliloğlu-Gürhan SI
    Biotech Histochem; 2015; 90(7):516-28. PubMed ID: 25994048
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bone tissue engineering in oral peri-implant defects in preclinical in vivo research: A systematic review and meta-analysis.
    Shanbhag S; Pandis N; Mustafa K; Nyengaard JR; Stavropoulos A
    J Tissue Eng Regen Med; 2018 Jan; 12(1):e336-e349. PubMed ID: 28095650
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Dentin matrix in tissue regeneration: a progress report].
    Zhu T; Guo WH
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2019 Feb; 37(1):92-96. PubMed ID: 30854827
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In Vivo Bone Tissue Engineering Strategies: Advances and Prospects.
    Tsiklin IL; Shabunin AV; Kolsanov AV; Volova LT
    Polymers (Basel); 2022 Aug; 14(15):. PubMed ID: 35956735
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multilayer scaffolds in orthopaedic tissue engineering.
    Atesok K; Doral MN; Karlsson J; Egol KA; Jazrawi LM; Coelho PG; Martinez A; Matsumoto T; Owens BD; Ochi M; Hurwitz SR; Atala A; Fu FH; Lu HH; Rodeo SA
    Knee Surg Sports Traumatol Arthrosc; 2016 Jul; 24(7):2365-73. PubMed ID: 25466277
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biomimetic Materials and Fabrication Approaches for Bone Tissue Engineering.
    Kim HD; Amirthalingam S; Kim SL; Lee SS; Rangasamy J; Hwang NS
    Adv Healthc Mater; 2017 Dec; 6(23):. PubMed ID: 29171714
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.