BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

631 related articles for article (PubMed ID: 33997497)

  • 41. Bone Tissue Engineering and Nanotechnology: A Promising Combination for Bone Regeneration.
    Bauso LV; La Fauci V; Longo C; Calabrese G
    Biology (Basel); 2024 Apr; 13(4):. PubMed ID: 38666849
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Chitosan based biocomposite scaffolds for bone tissue engineering.
    Saravanan S; Leena RS; Selvamurugan N
    Int J Biol Macromol; 2016 Dec; 93(Pt B):1354-1365. PubMed ID: 26845481
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen porous composite scaffolds for bone tissue engineering.
    Chen Y; Kawazoe N; Chen G
    Acta Biomater; 2018 Feb; 67():341-353. PubMed ID: 29242161
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nanofibrous structured biomimetic strategies for skin tissue regeneration.
    Jayarama Reddy V; Radhakrishnan S; Ravichandran R; Mukherjee S; Balamurugan R; Sundarrajan S; Ramakrishna S
    Wound Repair Regen; 2013; 21(1):1-16. PubMed ID: 23126632
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Repair and regeneration of osteochondral defects in the articular joints.
    Swieszkowski W; Tuan BH; Kurzydlowski KJ; Hutmacher DW
    Biomol Eng; 2007 Nov; 24(5):489-95. PubMed ID: 17931965
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biomimicking design of artificial periosteum for promoting bone healing.
    Yang Y; Rao J; Liu H; Dong Z; Zhang Z; Bei HP; Wen C; Zhao X
    J Orthop Translat; 2022 Sep; 36():18-32. PubMed ID: 35891926
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Natural Polymeric Scaffolds in Bone Regeneration.
    Filippi M; Born G; Chaaban M; Scherberich A
    Front Bioeng Biotechnol; 2020; 8():474. PubMed ID: 32509754
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A bird's eye view on the use of electrospun nanofibrous scaffolds for bone tissue engineering: Current state-of-the-art, emerging directions and future trends.
    Rezvani Z; Venugopal JR; Urbanska AM; Mills DK; Ramakrishna S; Mozafari M
    Nanomedicine; 2016 Oct; 12(7):2181-2200. PubMed ID: 27247186
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bone Regeneration Based on Tissue Engineering Conceptions - A 21st Century Perspective.
    Henkel J; Woodruff MA; Epari DR; Steck R; Glatt V; Dickinson IC; Choong PF; Schuetz MA; Hutmacher DW
    Bone Res; 2013 Sep; 1(3):216-48. PubMed ID: 26273505
    [TBL] [Abstract][Full Text] [Related]  

  • 50. CD34
    Hertweck J; Ritz U; Götz H; Schottel PC; Rommens PM; Hofmann A
    J Biomed Mater Res B Appl Biomater; 2018 May; 106(4):1505-1516. PubMed ID: 28730696
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bioinspired Three-Dimensional Magnetoactive Scaffolds for Bone Tissue Engineering.
    Fernandes MM; Correia DM; Ribeiro C; Castro N; Correia V; Lanceros-Mendez S
    ACS Appl Mater Interfaces; 2019 Dec; 11(48):45265-45275. PubMed ID: 31682095
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A State-of-the-Art of Functional Scaffolds for 3D Nervous Tissue Regeneration.
    Tupone MG; d'Angelo M; Castelli V; Catanesi M; Benedetti E; Cimini A
    Front Bioeng Biotechnol; 2021; 9():639765. PubMed ID: 33816451
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Self-healing hydrogels for bone defect repair.
    Li W; Wu Y; Zhang X; Wu T; Huang K; Wang B; Liao J
    RSC Adv; 2023 Jun; 13(25):16773-16788. PubMed ID: 37283866
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bioactive cell-derived matrices combined with polymer mesh scaffold for osteogenesis and bone healing.
    Kim IG; Hwang MP; Du P; Ko J; Ha CW; Do SH; Park K
    Biomaterials; 2015 May; 50():75-86. PubMed ID: 25736498
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Advances in the Application of Photothermal Composite Scaffolds for Osteosarcoma Ablation and Bone Regeneration.
    Chen X; Yang L; Wu Y; Wang L; Li H
    ACS Omega; 2023 Dec; 8(49):46362-46375. PubMed ID: 38107965
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nanofiber technology: designing the next generation of tissue engineering scaffolds.
    Barnes CP; Sell SA; Boland ED; Simpson DG; Bowlin GL
    Adv Drug Deliv Rev; 2007 Dec; 59(14):1413-33. PubMed ID: 17916396
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bio-surface coated titanium scaffolds with cancellous bone-like biomimetic structure for enhanced bone tissue regeneration.
    Zhang B; Li J; He L; Huang H; Weng J
    Acta Biomater; 2020 Sep; 114():431-448. PubMed ID: 32682055
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biomaterial scaffolds in maxillofacial bone tissue engineering: A review of recent advances.
    Huang X; Lou Y; Duan Y; Liu H; Tian J; Shen Y; Wei X
    Bioact Mater; 2024 Mar; 33():129-156. PubMed ID: 38024227
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair.
    Tandon B; Blaker JJ; Cartmell SH
    Acta Biomater; 2018 Jun; 73():1-20. PubMed ID: 29673838
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Applications of X-ray computed tomography for the evaluation of biomaterial-mediated bone regeneration in critical-sized defects.
    Fernández MP; Witte F; Tozzi G
    J Microsc; 2020 Mar; 277(3):179-196. PubMed ID: 31701530
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.