These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 33997580)

  • 1. Computational modeling for cardiovascular tissue engineering: the importance of including cell behavior in growth and remodeling algorithms.
    Loerakker S; Ristori T
    Curr Opin Biomed Eng; 2020 Sep; 15():1-9. PubMed ID: 33997580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechano-regulated cell-cell signaling in the context of cardiovascular tissue engineering.
    Karakaya C; van Asten JGM; Ristori T; Sahlgren CM; Loerakker S
    Biomech Model Mechanobiol; 2022 Feb; 21(1):5-54. PubMed ID: 34613528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implementing Computational Modeling in Tissue Engineering: Where Disciplines Meet.
    Post JN; Loerakker S; Merks RMH; Carlier A
    Tissue Eng Part A; 2022 Jun; 28(11-12):542-554. PubMed ID: 35345902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward the directed self-assembly of engineered tissues.
    Varner VD; Nelson CM
    Annu Rev Chem Biomol Eng; 2014; 5():507-26. PubMed ID: 24797818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential outcomes of venous and arterial tissue engineered vascular grafts highlight the importance of coupling long-term implantation studies with computational modeling.
    Best CA; Szafron JM; Rocco KA; Zbinden J; Dean EW; Maxfield MW; Kurobe H; Tara S; Bagi PS; Udelsman BV; Khosravi R; Yi T; Shinoka T; Humphrey JD; Breuer CK
    Acta Biomater; 2019 Aug; 94():183-194. PubMed ID: 31200116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stress Analysis-Driven Design of Bilayered Scaffolds for Tissue-Engineered Vascular Grafts.
    Szafron JM; Breuer CK; Wang Y; Humphrey JD
    J Biomech Eng; 2017 Dec; 139(12):1210081-12100810. PubMed ID: 28886204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Use of Finite Element Analyses to Design and Fabricate Three-Dimensional Scaffolds for Skeletal Tissue Engineering.
    Hendrikson WJ; van Blitterswijk CA; Rouwkema J; Moroni L
    Front Bioeng Biotechnol; 2017; 5():30. PubMed ID: 28567371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational modeling of cardiac growth and remodeling in pressure overloaded hearts-Linking microstructure to organ phenotype.
    Niestrawska JA; Augustin CM; Plank G
    Acta Biomater; 2020 Apr; 106():34-53. PubMed ID: 32058078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of Computational Method in Designing a Unit Cell of Bone Tissue Engineering Scaffold: A Review.
    Mustafa NS; Akhmal NH; Izman S; Ab Talib MH; Shaiful AIM; Omar MNB; Yahaya NZ; Illias S
    Polymers (Basel); 2021 May; 13(10):. PubMed ID: 34069101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mathematical model for the determination of forming tissue moduli in needled-nonwoven scaffolds.
    Soares JS; Zhang W; Sacks MS
    Acta Biomater; 2017 Mar; 51():220-236. PubMed ID: 28063987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of Tissue-Engineered Vascular Graft Design Using Computational Modeling.
    Szafron JM; Ramachandra AB; Breuer CK; Marsden AL; Humphrey JD
    Tissue Eng Part C Methods; 2019 Oct; 25(10):561-570. PubMed ID: 31218941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling mechanical signals on the surface of µCT and CAD based rapid prototype scaffold models to predict (early stage) tissue development.
    Hendrikson WJ; van Blitterswijk CA; Verdonschot N; Moroni L; Rouwkema J
    Biotechnol Bioeng; 2014 Sep; 111(9):1864-75. PubMed ID: 24824318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immuno-driven and Mechano-mediated Neotissue Formation in Tissue Engineered Vascular Grafts.
    Szafron JM; Khosravi R; Reinhardt J; Best CA; Bersi MR; Yi T; Breuer CK; Humphrey JD
    Ann Biomed Eng; 2018 Nov; 46(11):1938-1950. PubMed ID: 29987541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards multi-dynamic mechano-biological optimization of 3D-printed scaffolds to foster bone regeneration.
    Metz C; Duda GN; Checa S
    Acta Biomater; 2020 Jan; 101():117-127. PubMed ID: 31669697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Progress in the mechanical modulation of cell functions in tissue engineering.
    Dey K; Roca E; Ramorino G; Sartore L
    Biomater Sci; 2020 Dec; 8(24):7033-7081. PubMed ID: 33150878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the impact of scaffold architecture and mechanical loading on collagen turnover in engineered cardiovascular tissues.
    Argento G; de Jonge N; Söntjens SH; Oomens CW; Bouten CV; Baaijens FP
    Biomech Model Mechanobiol; 2015 Jun; 14(3):603-13. PubMed ID: 25319256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Building a Total Bioartificial Heart: Harnessing Nature to Overcome the Current Hurdles.
    Taylor DA; Frazier OH; Elgalad A; Hochman-Mendez C; Sampaio LC
    Artif Organs; 2018 Oct; 42(10):970-982. PubMed ID: 30044011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superior Tissue Evolution in Slow-Degrading Scaffolds for Valvular Tissue Engineering.
    Brugmans MM; Soekhradj-Soechit RS; van Geemen D; Cox M; Bouten CV; Baaijens FP; Driessen-Mol A
    Tissue Eng Part A; 2016 Jan; 22(1-2):123-32. PubMed ID: 26466917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Imprinting Strategies for Tissue Engineering Applications: A Review.
    Bonatti AF; De Maria C; Vozzi G
    Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33673361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applications of Computer Modeling and Simulation in Cartilage Tissue Engineering.
    Pearce D; Fischer S; Huda F; Vahdati A
    Tissue Eng Regen Med; 2020 Feb; 17(1):1-13. PubMed ID: 32002838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.