These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 33997798)

  • 1. Ion-channel regulation of response decorrelation in a heterogeneous multi-scale model of the dentate gyrus.
    Mishra P; Narayanan R
    Curr Res Neurobiol; 2021; 2():100007. PubMed ID: 33997798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disparate forms of heterogeneities and interactions among them drive channel decorrelation in the dentate gyrus: Degeneracy and dominance.
    Mishra P; Narayanan R
    Hippocampus; 2019 Apr; 29(4):378-403. PubMed ID: 30260063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dominant role of adult neurogenesis-induced structural heterogeneities in driving plasticity heterogeneity in dentate gyrus granule cells.
    Shridhar S; Mishra P; Narayanan R
    Hippocampus; 2022 Jul; 32(7):488-516. PubMed ID: 35561083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ion-channel degeneracy and heterogeneities in the emergence of complex spike bursts in CA3 pyramidal neurons.
    Roy R; Narayanan R
    J Physiol; 2023 Aug; 601(15):3297-3328. PubMed ID: 36201674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degeneracy in the robust expression of spectral selectivity, subthreshold oscillations, and intrinsic excitability of entorhinal stellate cells.
    Mittal D; Narayanan R
    J Neurophysiol; 2018 Aug; 120(2):576-600. PubMed ID: 29718802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterogeneities in intrinsic excitability and frequency-dependent response properties of granule cells across the blades of the rat dentate gyrus.
    Mishra P; Narayanan R
    J Neurophysiol; 2020 Feb; 123(2):755-772. PubMed ID: 31913748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adult neurogenesis modifies excitability of the dentate gyrus.
    Ikrar T; Guo N; He K; Besnard A; Levinson S; Hill A; Lee HK; Hen R; Xu X; Sahay A
    Front Neural Circuits; 2013; 7():204. PubMed ID: 24421758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constitutive and Synaptic Activation of GIRK Channels Differentiates Mature and Newborn Dentate Granule Cells.
    Gonzalez JC; Epps SA; Markwardt SJ; Wadiche JI; Overstreet-Wadiche L
    J Neurosci; 2018 Jul; 38(29):6513-6526. PubMed ID: 29915136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kv4.1, a Key Ion Channel For Low Frequency Firing of Dentate Granule Cells, Is Crucial for Pattern Separation.
    Kim KR; Lee SY; Yoon SH; Kim Y; Jeong HJ; Lee S; Suh YH; Kang JS; Cho H; Lee SH; Kim MH; Ho WK
    J Neurosci; 2020 Mar; 40(11):2200-2214. PubMed ID: 32047055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient phase coding in hippocampal place cells.
    Seenivasan P; Narayanan R
    Phys Rev Res; 2020; 2(3):033393. PubMed ID: 32984841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Forgetting at biologically realistic levels of neurogenesis in a large-scale hippocampal model.
    Tran LM; Josselyn SA; Richards BA; Frankland PW
    Behav Brain Res; 2019 Dec; 376():112180. PubMed ID: 31472193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intrinsic rescaling of granule cells restores pattern separation ability of a dentate gyrus network model during epileptic hyperexcitability.
    Yim MY; Hanuschkin A; Wolfart J
    Hippocampus; 2015 Mar; 25(3):297-308. PubMed ID: 25269417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ion-channel degeneracy: Multiple ion channels heterogeneously regulate intrinsic physiology of rat hippocampal granule cells.
    Mishra P; Narayanan R
    Physiol Rep; 2021 Aug; 9(15):e14963. PubMed ID: 34342171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degeneracy in the regulation of short-term plasticity and synaptic filtering by presynaptic mechanisms.
    Mukunda CL; Narayanan R
    J Physiol; 2017 Apr; 595(8):2611-2637. PubMed ID: 28026868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion Channel Degeneracy, Variability, and Covariation in Neuron and Circuit Resilience.
    Goaillard JM; Marder E
    Annu Rev Neurosci; 2021 Jul; 44():335-357. PubMed ID: 33770451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ERG3 potassium channel-mediated suppression of neuronal intrinsic excitability and prevention of seizure generation in mice.
    Xiao K; Sun Z; Jin X; Ma W; Song Y; Lai S; Chen Q; Fan M; Zhang J; Yue W; Huang Z
    J Physiol; 2018 Oct; 596(19):4729-4752. PubMed ID: 30016551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mossy fiber sprouting interacts with sodium channel mutations to increase dentate gyrus excitability.
    Thomas EA; Reid CA; Petrou S
    Epilepsia; 2010 Jan; 51(1):136-45. PubMed ID: 19682031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impaired neurogenesis of the dentate gyrus is associated with pattern separation deficits: A computational study.
    Faghihi F; Moustafa AA
    J Integr Neurosci; 2016 Sep; 15(3):277-293. PubMed ID: 27650784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypothalamic Glutamate/GABA Cotransmission Modulates Hippocampal Circuits and Supports Long-Term Potentiation.
    Ajibola MI; Wu JW; Abdulmajeed WI; Lien CC
    J Neurosci; 2021 Sep; 41(39):8181-8196. PubMed ID: 34380766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experience-Dependent Regulation of Dentate Gyrus Excitability by Adult-Born Granule Cells.
    Park EH; Burghardt NS; Dvorak D; Hen R; Fenton AA
    J Neurosci; 2015 Aug; 35(33):11656-66. PubMed ID: 26290242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.