BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 33998527)

  • 1. A finite element model of the human lower thorax to pelvis spinal segment: Validation and modal analysis.
    Fan W; Zhao D; Guo LX
    Biomed Mater Eng; 2021; 32(5):267-279. PubMed ID: 33998527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite element modeling and modal analysis of the human spine vibration configuration.
    Guo LX; Zhang YM; Zhang M
    IEEE Trans Biomed Eng; 2011 Oct; 58(10):2987-90. PubMed ID: 21693412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of anteroposterior shifting of trunk mass centroid on vibrational configuration of human spine.
    Guo LX; Zhang M; Wang ZW; Zhang YM; Wen BC; Li JL
    Comput Biol Med; 2008 Jan; 38(1):146-51. PubMed ID: 17931615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of the modal characteristics of the human spine at resonant frequency using finite element models.
    Guo LX; Teo EC
    Proc Inst Mech Eng H; 2005 Jul; 219(4):277-84. PubMed ID: 16050218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vibration modes of injured spine at resonant frequencies under vertical vibration.
    Guo LX; Zhang M; Zhang YM; Teo EC
    Spine (Phila Pa 1976); 2009 Sep; 34(19):E682-8. PubMed ID: 19730200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence prediction of tissue injury on frequency variations of the lumbar spine under vibration.
    Guo LX; Zhang M; Li JL; Zhang YM; Wang ZW; Teo EC
    OMICS; 2009 Dec; 13(6):521-6. PubMed ID: 19780682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite element modeling and static/dynamic validation of thoracolumbar-pelvic segment.
    Guo LX; Li WJ
    Comput Methods Biomech Biomed Engin; 2020 Feb; 23(2):69-80. PubMed ID: 31813282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human body modeling method to simulate the biodynamic characteristics of spine in vivo with different sitting postures.
    Dong RC; Guo LX
    Int J Numer Method Biomed Eng; 2017 Nov; 33(11):. PubMed ID: 28264145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ability of the finite element models to predict response of the human spine to sinusoidal vertical vibration.
    Kong WZ; Goel VK
    Spine (Phila Pa 1976); 2003 Sep; 28(17):1961-7. PubMed ID: 12973142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Movement posture and injury pattern of pelvis-lumbar spine of seated human impacted by the vertical high loads: a finite element analysis.
    Jiang Y; Xiong X; Chen Z; Li Y
    Comput Methods Biomech Biomed Engin; 2023 May; 26(7):835-845. PubMed ID: 35758223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vibration characteristics of the human spine under axial cyclic loads: effect of frequency and damping.
    Guo LX; Teo EC; Lee KK; Zhang QH
    Spine (Phila Pa 1976); 2005 Mar; 30(6):631-7. PubMed ID: 15770177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of different frequencies of axial cyclic loading on time-domain vibration response of the lumbar spine: A finite element study.
    Fan W; Guo LX
    Comput Biol Med; 2017 Jul; 86():75-81. PubMed ID: 28511121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential response to vibration of three forms of scoliosis during axial cyclic loading: a finite element study.
    Jia S; Li Y; Xie J; Tian T; Zhang S; Han L
    BMC Musculoskelet Disord; 2019 Aug; 20(1):370. PubMed ID: 31409412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite element modelling and biodynamic response prediction of the seated human body exposed to whole-body vibration.
    Gao K; Zhang Z; Lu H; Xu Z; He Y
    Ergonomics; 2023 Dec; 66(12):1854-1867. PubMed ID: 36656143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Role of Posterior Screw Fixation in Single-Level Transforaminal Lumbar Interbody Fusion During Whole Body Vibration: A Finite Element Study.
    Fan W; Guo LX
    World Neurosurg; 2018 Jun; 114():e1086-e1093. PubMed ID: 29605701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of whole-body vibration and sitting configurations on lumbar spinal loads of vehicle occupants.
    Amiri S; Naserkhaki S; Parnianpour M
    Comput Biol Med; 2019 Apr; 107():292-301. PubMed ID: 30901617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and Validation of a Whole Human Body Finite Element Model with Detailed Lumbar Spine.
    Guo LX; Zhang C
    World Neurosurg; 2022 Jul; 163():e579-e592. PubMed ID: 35436583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of bilateral pedicle screw fixation on vibration response of the disc degenerated human lumbar spine: A finite element stress analysis.
    Fan W; Guo LX
    Technol Health Care; 2019; 27(4):441-450. PubMed ID: 31033465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combination of finite element modeling and optimization for the study of lumbar spine biomechanics considering the 3D thorax-pelvis orientation.
    Ezquerro F; Simón A; Prado M; Pérez A
    Med Eng Phys; 2004 Jan; 26(1):11-22. PubMed ID: 14644594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic characteristics of osteoporotic lumbar spine under vertical vibration after cement augmentation.
    Su X; Shen H; Shi W; Yang H; Lv F; Lin J
    Am J Transl Res; 2017; 9(9):4036-4045. PubMed ID: 28979679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.