These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 33998620)

  • 21. Self-location of acceptors as "isolated" or "stacked" energy traps in a supramolecular donor self-assembly: a strategy to wavelength tunable FRET emission.
    Ajayaghosh A; Vijayakumar C; Praveen VK; Babu SS; Varghese R
    J Am Chem Soc; 2006 Jun; 128(22):7174-5. PubMed ID: 16734466
    [TBL] [Abstract][Full Text] [Related]  

  • 22. White-light emitting hydrogen-bonded supramolecular copolymers based on pi-conjugated oligomers.
    Abbel R; Grenier C; Pouderoijen MJ; Stouwdam JW; Leclère PE; Sijbesma RP; Meijer EW; Schenning AP
    J Am Chem Soc; 2009 Jan; 131(2):833-43. PubMed ID: 19093865
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Construction of an Artificial Light-Harvesting System with Efficient Photocatalytic Activity in an Aqueous Solution Based on a FRET-Featuring Metallacage.
    Jia PP; Hu YX; Peng ZY; Song B; Zeng ZY; Ling QH; Zhao X; Xu L; Yang HB
    Inorg Chem; 2023 Feb; 62(5):1950-1957. PubMed ID: 35939800
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design, synthesis and photoinduced processes in molecular interlocked photosynthetic [60]fullerene systems.
    Megiatto JD; Guldi DM; Schuster DI
    Chem Soc Rev; 2020 Jan; 49(1):8-20. PubMed ID: 31808480
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Light-Harvesting Systems Based on Organic Nanocrystals To Mimic Chlorosomes.
    Chen PZ; Weng YX; Niu LY; Chen YZ; Wu LZ; Tung CH; Yang QZ
    Angew Chem Int Ed Engl; 2016 Feb; 55(8):2759-63. PubMed ID: 26799735
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Self-assembled nanoscale DNA-porphyrin complex for artificial light harvesting.
    Woller JG; Hannestad JK; Albinsson B
    J Am Chem Soc; 2013 Feb; 135(7):2759-68. PubMed ID: 23350631
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly Efficient Artificial Light-Harvesting Systems Constructed in an Aqueous Solution Based on Twisted Cucurbit[14]Uril.
    Luo Y; Zhang W; Ren Q; Tao Z; Xiao X
    ACS Appl Mater Interfaces; 2022 Jul; 14(26):29806-29812. PubMed ID: 35748110
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bimodal intramolecular excitation energy transfer in a multichromophore photosynthetic model system: hybrid fusion proteins comprising natural phycobilin- and artificial chlorophyll-binding domains.
    Zeng XL; Tang K; Zhou N; Zhou M; Hou HJ; Scheer H; Zhao KH; Noy D
    J Am Chem Soc; 2013 Sep; 135(36):13479-87. PubMed ID: 23941594
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cascade exciton-pumping engines with manipulated speed and efficiency in light-harvesting porous π-network films.
    Gu C; Huang N; Xu F; Gao J; Jiang D
    Sci Rep; 2015 Mar; 5():8867. PubMed ID: 25746459
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An Efficient Near-Infrared Emissive Artificial Supramolecular Light-Harvesting System for Imaging in the Golgi Apparatus.
    Chen XM; Cao Q; Bisoyi HK; Wang M; Yang H; Li Q
    Angew Chem Int Ed Engl; 2020 Jun; 59(26):10493-10497. PubMed ID: 32196893
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems.
    Wasielewski MR
    Acc Chem Res; 2009 Dec; 42(12):1910-21. PubMed ID: 19803479
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synchronous Imaging in Golgi Apparatus and Lysosome Enabled by Amphiphilic Calixarene-Based Artificial Light-Harvesting Systems.
    Hou XF; Zhang S; Chen X; Bisoyi HK; Xu T; Liu J; Chen D; Chen XM; Li Q
    ACS Appl Mater Interfaces; 2022 May; 14(19):22443-22453. PubMed ID: 35513893
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Micelle-Induced Self-Assembling Protein Nanowires: Versatile Supramolecular Scaffolds for Designing the Light-Harvesting System.
    Sun H; Zhang X; Miao L; Zhao L; Luo Q; Xu J; Liu J
    ACS Nano; 2016 Jan; 10(1):421-8. PubMed ID: 26634314
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Supramolecular Engineering of Efficient Artificial Light-Harvesting Systems from Cyanovinylene Chromophores and Pillar[5]arene-Based Polymer Hosts.
    Wang XH; Lou XY; Lu T; Wang C; Tang J; Liu F; Wang Y; Yang YW
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4593-4604. PubMed ID: 33430588
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Integrating DNA Photonic Wires into Light-Harvesting Supramolecular Polymers.
    Kownacki M; Langenegger SM; Liu SX; Häner R
    Angew Chem Int Ed Engl; 2019 Jan; 58(3):751-755. PubMed ID: 30353636
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mimicking the Energy Funnel of the Photosynthetic Unit Using a Dendrimer-Dye Supramolecular Assembly.
    Rama Krishna VS; Adak S; Jana P; Bheemireddy V; Bandyopadhyay S
    Chem Asian J; 2021 Nov; 16(21):3481-3486. PubMed ID: 34487427
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Artificial Light-Harvesting Metallacycle System with Sequential Energy Transfer for Photochemical Catalysis.
    Zhang D; Yu W; Li S; Xia Y; Li X; Li Y; Yi T
    J Am Chem Soc; 2021 Jan; 143(3):1313-1317. PubMed ID: 33448855
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Long-distance electronic energy transfer in light-harvesting supramolecular polymers.
    Winiger CB; Li S; Kumar GR; Langenegger SM; Häner R
    Angew Chem Int Ed Engl; 2014 Dec; 53(49):13609-13. PubMed ID: 25345576
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Light Harvesting and White-Light Generation in a Composite of Carbon Dots and Dye-Encapsulated BSA-Protein-Capped Gold Nanoclusters.
    Barman MK; Paramanik B; Bain D; Patra A
    Chemistry; 2016 Aug; 22(33):11699-705. PubMed ID: 27383453
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An ultralow-acceptor-content supramolecular light-harvesting system for white-light emission.
    Diao K; Whitaker DJ; Huang Z; Qian H; Ren D; Zhang L; Li ZY; Sun XQ; Xiao T; Wang L
    Chem Commun (Camb); 2022 Feb; 58(14):2343-2346. PubMed ID: 35080216
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.