These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 33998621)

  • 1. Motility-induced inter-particle correlations and dynamics: a microscopic approach for active Brownian particles.
    Dhont JKG; Park GW; Briels WJ
    Soft Matter; 2021 Jun; 17(22):5613-5632. PubMed ID: 33998621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new continuum model for suspensions of gyrotactic micro-organisms.
    Pedley TJ; Kessler JO
    J Fluid Mech; 1990 Mar; 212():155-82. PubMed ID: 11537107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colored-noise Fokker-Planck equation for the shear-induced self-diffusion process of non-Brownian particles.
    Lukassen LJ; Oberlack M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052145. PubMed ID: 25353777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The coherent motions of thermal active Brownian particles.
    Yang C; Zeng Y; Xu S; Zhou X
    Phys Chem Chem Phys; 2023 May; 25(18):13027-13032. PubMed ID: 37114336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of correlated noise in an energy depot model.
    Zeng C; Zeng J; Liu F; Wang H
    Sci Rep; 2016 Jan; 6():19591. PubMed ID: 26786478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-body correlations and conditional forces in suspensions of active hard disks.
    Härtel A; Richard D; Speck T
    Phys Rev E; 2018 Jan; 97(1-1):012606. PubMed ID: 29448434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homotopy analysis and Padé approximants applied to active Brownian motion.
    Apaza L; Sandoval M
    Phys Rev E; 2020 Mar; 101(3-1):032103. PubMed ID: 32290001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mode-coupling theory for tagged-particle motion of active Brownian particles.
    Reichert J; Mandal S; Voigtmann T
    Phys Rev E; 2021 Oct; 104(4-1):044608. PubMed ID: 34781467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the smallest nonvanishing eigenvalue of the fokker-planck equation for the brownian motion in a potential. II. The matrix continued fraction approach.
    Kalmykov YP
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jul; 62(1 Pt A):227-36. PubMed ID: 11088456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pair-distribution function of active Brownian spheres in two spatial dimensions: Simulation results and analytic representation.
    Jeggle J; Stenhammar J; Wittkowski R
    J Chem Phys; 2020 May; 152(19):194903. PubMed ID: 33687241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analytic Solution of an Active Brownian Particle in a Harmonic Well.
    Caraglio M; Franosch T
    Phys Rev Lett; 2022 Oct; 129(15):158001. PubMed ID: 36269953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collective dynamics of active circle-swimming Lennard-Jones particles.
    Hrishikesh B; Mani E
    Phys Chem Chem Phys; 2022 Aug; 24(33):19792-19798. PubMed ID: 35801536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ratcheting of Brownian swimmers in periodically corrugated channels: a reduced Fokker-Planck approach.
    Yariv E; Schnitzer O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032115. PubMed ID: 25314403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mode-coupling theory for the steady-state dynamics of active Brownian particles.
    Szamel G
    J Chem Phys; 2019 Mar; 150(12):124901. PubMed ID: 30927902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-dimensional active motion.
    Sevilla FJ
    Phys Rev E; 2020 Feb; 101(2-1):022608. PubMed ID: 32168716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic shapes of floppy vesicles enclosing active Brownian particles with membrane adhesion.
    Iyer P; Gompper G; Fedosov DA
    Soft Matter; 2023 May; 19(19):3436-3449. PubMed ID: 37132446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local stress and pressure in an inhomogeneous system of spherical active Brownian particles.
    Das S; Gompper G; Winkler RG
    Sci Rep; 2019 Apr; 9(1):6608. PubMed ID: 31036857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theory for the dynamics of dense systems of athermal self-propelled particles.
    Szamel G
    Phys Rev E; 2016 Jan; 93(1):012603. PubMed ID: 26871118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macrotransport of active particles in periodic channels and fields: Rectification and dispersion.
    Peng Z
    J Chem Phys; 2024 Oct; 161(15):. PubMed ID: 39404215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison between theoretical values and simulation results of viscosity for the dissipative particle dynamics method.
    Satoh A; Majima T
    J Colloid Interface Sci; 2005 Mar; 283(1):251-66. PubMed ID: 15694446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.