These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 33998632)
1. Thermal considerations for microswimmer trap-and-release using standing surface acoustic waves. Cui M; Kim M; Weisensee PB; Meacham JM Lab Chip; 2021 Jun; 21(13):2534-2543. PubMed ID: 33998632 [TBL] [Abstract][Full Text] [Related]
2. Robust acoustic trapping and perturbation of single-cell microswimmers illuminate three-dimensional swimming and ciliary coordination. Cui M; Dutcher SK; Bayly PV; Meacham JM Proc Natl Acad Sci U S A; 2023 Jun; 120(25):e2218951120. PubMed ID: 37307440 [TBL] [Abstract][Full Text] [Related]
3. The complexity of surface acoustic wave fields used for microfluidic applications. Weser R; Winkler A; Weihnacht M; Menzel S; Schmidt H Ultrasonics; 2020 Aug; 106():106160. PubMed ID: 32334142 [TBL] [Abstract][Full Text] [Related]
4. Frequency dependence of surface acoustic wave swimming. Pouya C; Hoggard K; Gossage SH; Peter HR; Poole T; Nash GR J R Soc Interface; 2019 Jun; 16(155):20190113. PubMed ID: 31213171 [TBL] [Abstract][Full Text] [Related]
5. Low-Temperature Variation of Acoustic Velocity in PDMS for High-Frequency Applications. Streque J; Rouxel D; Talbi A; Thomassey M; Vincent B IEEE Trans Ultrason Ferroelectr Freq Control; 2018 May; 65(5):862-869. PubMed ID: 29733288 [TBL] [Abstract][Full Text] [Related]
8. Swimming using surface acoustic waves. Bourquin Y; Cooper JM PLoS One; 2013; 8(2):e42686. PubMed ID: 23431358 [TBL] [Abstract][Full Text] [Related]
9. Flexible acoustic lens-based surface acoustic wave device for manipulation and directional transport of micro-particles. Huang J; Ren X; Zhou Q; Zhou J; Xu Z Ultrasonics; 2023 Feb; 128():106865. PubMed ID: 36260963 [TBL] [Abstract][Full Text] [Related]
10. Acoustothermal heating of polydimethylsiloxane microfluidic system. Ha BH; Lee KS; Destgeer G; Park J; Choung JS; Jung JH; Shin JH; Sung HJ Sci Rep; 2015 Jul; 5():11851. PubMed ID: 26138310 [TBL] [Abstract][Full Text] [Related]
11. Surface Acoustic Waves (SAW)-Based Biosensing for Quantification of Cell Growth in 2D and 3D Cultures. Wang T; Green R; Nair RR; Howell M; Mohapatra S; Guldiken R; Mohapatra SS Sensors (Basel); 2015 Dec; 15(12):32045-55. PubMed ID: 26703604 [TBL] [Abstract][Full Text] [Related]
12. A disposable acoustofluidic chip for nano/microparticle separation using unidirectional acoustic transducers. Zhao S; Wu M; Yang S; Wu Y; Gu Y; Chen C; Ye J; Xie Z; Tian Z; Bachman H; Huang PH; Xia J; Zhang P; Zhang H; Huang TJ Lab Chip; 2020 Apr; 20(7):1298-1308. PubMed ID: 32195522 [TBL] [Abstract][Full Text] [Related]
13. Measuring Velocity, Attenuation, and Reflection in Surface Acoustic Wave Cavities Through Acoustic Fabry-Pérot Spectra. Kelly L; Berini P; Bao X IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Apr; 69(4):1542-1548. PubMed ID: 35081023 [TBL] [Abstract][Full Text] [Related]
14. Trends and Applications of Surface and Bulk Acoustic Wave Devices: A Review. Yang Y; Dejous C; Hallil H Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677104 [TBL] [Abstract][Full Text] [Related]
15. Reusable acoustic tweezers for disposable devices. Guo F; Xie Y; Li S; Lata J; Ren L; Mao Z; Ren B; Wu M; Ozcelik A; Huang TJ Lab Chip; 2015 Dec; 15(24):4517-23. PubMed ID: 26507411 [TBL] [Abstract][Full Text] [Related]
16. Surface acoustic wave manipulation of bioparticles. Qi M; Dang D; Yang X; Wang J; Zhang H; Liang W Soft Matter; 2023 Jun; 19(23):4166-4187. PubMed ID: 37212436 [TBL] [Abstract][Full Text] [Related]
17. Temperature and trapping characterization of an acoustic trap with miniaturized integrated transducers--towards in-trap temperature regulation. Johansson L; Evander M; Lilliehorn T; Almqvist M; Nilsson J; Laurell T; Johansson S Ultrasonics; 2013 Jul; 53(5):1020-32. PubMed ID: 23497805 [TBL] [Abstract][Full Text] [Related]
18. Grooving and Absorption on Substrates to Reduce the Bulk Acoustic Wave for Surface Acoustic Wave Micro-Force Sensors. Feng Y; Yu H; Liu W; Hu K; Sun S; Yang Z; Wang B Micromachines (Basel); 2024 May; 15(5):. PubMed ID: 38793210 [TBL] [Abstract][Full Text] [Related]
19. On the acoustically induced fluid flow in particle separation systems employing standing surface acoustic waves - Part II. Sachs S; Cierpka C; König J Lab Chip; 2022 May; 22(10):2028-2040. PubMed ID: 35485185 [TBL] [Abstract][Full Text] [Related]
20. Flow induced by acoustic streaming on surface-acoustic-wave devices and its application in biofouling removal: a computational study and comparisons to experiment. Sankaranarayanan SK; Cular S; Bhethanabotla VR; Joseph B Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066308. PubMed ID: 18643372 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]