These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 33998790)

  • 1. Explosive Pancake Bouncing on Hot Superhydrophilic Surfaces.
    Liu M; Du H; Cheng Y; Zheng H; Jin Y; To S; Wang S; Wang Z
    ACS Appl Mater Interfaces; 2021 May; 13(20):24321-24328. PubMed ID: 33998790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bouncing Regimes of Supercooled Water Droplets Impacting Superhydrophobic Surfaces with Controlled Temperature and Humidity.
    Guo C; Liu L; Yang R; Lu J; Liu S
    Langmuir; 2023 Jul; 39(29):10199-10208. PubMed ID: 37436938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-Area Fabrication of Droplet Pancake Bouncing Surface and Control of Bouncing State.
    Song J; Gao M; Zhao C; Lu Y; Huang L; Liu X; Carmalt CJ; Deng X; Parkin IP
    ACS Nano; 2017 Sep; 11(9):9259-9267. PubMed ID: 28841277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pancake Jumping of Sessile Droplets.
    Qian C; Zhou F; Wang T; Li Q; Hu D; Chen X; Wang Z
    Adv Sci (Weinh); 2022 Mar; 9(7):e2103834. PubMed ID: 35032105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust Superhydrophobic Conical Pillars from Syringe Needle Shape to Straight Conical Pillar Shape for Droplet Pancake Bouncing.
    Song J; Huang L; Zhao C; Wu S; Liu H; Lu Y; Deng X; Carmalt CJ; Parkin IP; Sun Y
    ACS Appl Mater Interfaces; 2019 Dec; 11(48):45345-45353. PubMed ID: 31651139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical and Experimental Studies on the Controllable Pancake Bouncing Behavior of Droplets.
    Wu H; Jiang K; Xu Z; Yu S; Peng X; Zhang Z; Bai H; Liu A; Chai G
    Langmuir; 2019 Dec; 35(52):17000-17008. PubMed ID: 31786923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-Pressure Pancake Bouncing on Superhydrophobic Surfaces.
    Fu Z; Jin H; Zhang J; Xue T; Guo Q; Yao G; Gao H; Wang Z; Wen D
    Small; 2024 Mar; ():e2310200. PubMed ID: 38497491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-Adaptive Droplet Bouncing on a Dual Gradient Surface.
    Wu C; Qin X; Zheng H; Xu Z; Song Y; Jin Y; Zhang H; Mo J; Li W; Lu J; Wang Z
    Small; 2023 Oct; ():e2304635. PubMed ID: 37786271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pancake bouncing on superhydrophobic surfaces.
    Liu Y; Moevius L; Xu X; Qian T; Yeomans JM; Wang Z
    Nat Phys; 2014 Jul; 10(7):515-519. PubMed ID: 28553363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superhydrophobic-like tunable droplet bouncing on slippery liquid interfaces.
    Hao C; Li J; Liu Y; Zhou X; Liu Y; Liu R; Che L; Zhou W; Sun D; Li L; Xu L; Wang Z
    Nat Commun; 2015 Aug; 6():7986. PubMed ID: 26250403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pancake bouncing: simulations and theory and experimental verification.
    Moevius L; Liu Y; Wang Z; Yeomans JM
    Langmuir; 2014 Nov; 30(43):13021-32. PubMed ID: 25286146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous droplet trampolining on rigid superhydrophobic surfaces.
    Schutzius TM; Jung S; Maitra T; Graeber G; Köhme M; Poulikakos D
    Nature; 2015 Nov; 527(7576):82-5. PubMed ID: 26536959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of geometrical parameters on rebound of impacting droplets on leaky superhydrophobic meshes.
    Kumar A; Tripathy A; Nam Y; Lee C; Sen P
    Soft Matter; 2018 Feb; 14(9):1571-1580. PubMed ID: 29355280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bouncing Dynamics of Impact Droplets on the Biomimetic Plane and Convex Superhydrophobic Surfaces with Dual-Level and Three-Level Structures.
    Lian Z; Xu J; Ren W; Wang Z; Yu H
    Nanomaterials (Basel); 2019 Oct; 9(11):. PubMed ID: 31731520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of superamphiphobic macrotextures on dynamics of viscous liquid droplets.
    Raiyan A; Mclaughlin TS; Annavarapu RK; Sojoudi H
    Sci Rep; 2018 Oct; 8(1):15344. PubMed ID: 30337604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superhydrophobic porous networks for enhanced droplet shedding.
    Liu Y; Wang Z
    Sci Rep; 2016 Sep; 6():33817. PubMed ID: 27644452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of Coalescence-Induced Droplet Jumping Height on Hierarchical Superhydrophobic Surfaces.
    Chen X; Weibel JA; Garimella SV
    ACS Omega; 2017 Jun; 2(6):2883-2890. PubMed ID: 31457623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steerable directional bouncing and contact time reduction of impacting droplets on superhydrophobic stepped surfaces.
    Du J; Li Y; Wu X; Min Q
    J Colloid Interface Sci; 2023 Jan; 629(Pt A):1032-1044. PubMed ID: 36154970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Droplet Impact on Anisotropic Superhydrophobic Surfaces.
    Guo C; Zhao D; Sun Y; Wang M; Liu Y
    Langmuir; 2018 Mar; 34(11):3533-3540. PubMed ID: 29436832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Droplet impact on superhydrophobic surfaces fully decorated with cylindrical macrotextures.
    Abolghasemibizaki M; Mohammadi R
    J Colloid Interface Sci; 2018 Jan; 509():422-431. PubMed ID: 28923739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.