BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 33998793)

  • 1. Charge Regulation during Amyloid Formation of α-Synuclein.
    Pálmadóttir T; Malmendal A; Leiding T; Lund M; Linse S
    J Am Chem Soc; 2021 May; 143(20):7777-7791. PubMed ID: 33998793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of the acidic domain of α-synuclein in amyloid fibril formation: a molecular dynamics study.
    Park S; Yoon J; Jang S; Lee K; Shin S
    J Biomol Struct Dyn; 2016; 34(2):376-83. PubMed ID: 25869255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NMR determination of pKa values in α-synuclein.
    Croke RL; Patil SM; Quevreaux J; Kendall DA; Alexandrescu AT
    Protein Sci; 2011 Feb; 20(2):256-69. PubMed ID: 21280118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NMR unveils an N-terminal interaction interface on acetylated-α-synuclein monomers for recruitment to fibrils.
    Yang X; Wang B; Hoop CL; Williams JK; Baum J
    Proc Natl Acad Sci U S A; 2021 May; 118(18):. PubMed ID: 33903234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A pH-dependent switch promotes β-synuclein fibril formation via glutamate residues.
    Moriarty GM; Olson MP; Atieh TB; Janowska MK; Khare SD; Baum J
    J Biol Chem; 2017 Sep; 292(39):16368-16379. PubMed ID: 28710275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural features of α-synuclein amyloid fibrils revealed by Raman spectroscopy.
    Flynn JD; McGlinchey RP; Walker RL; Lee JC
    J Biol Chem; 2018 Jan; 293(3):767-776. PubMed ID: 29191831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation on the Molecular Interactions Stabilizing the Structure of α-synuclein Fibril: An In silico Study.
    Sanjeev A; Mattaparthi VSK
    Cent Nerv Syst Agents Med Chem; 2017; 17(3):209-218. PubMed ID: 28460628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charge neutralization and collapse of the C-terminal tail of alpha-synuclein at low pH.
    McClendon S; Rospigliosi CC; Eliezer D
    Protein Sci; 2009 Jul; 18(7):1531-40. PubMed ID: 19475665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. α-Synuclein aggregation at low concentrations.
    Afitska K; Fucikova A; Shvadchak VV; Yushchenko DA
    Biochim Biophys Acta Proteins Proteom; 2019; 1867(7-8):701-709. PubMed ID: 31096048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Instantaneous amyloid fibril formation of alpha-synuclein from the oligomeric granular structures in the presence of hexane.
    Lee JH; Bhak G; Lee SG; Paik SR
    Biophys J; 2008 Jul; 95(2):L16-8. PubMed ID: 18469076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. β-Turn exchanges in the α-synuclein segment 44-TKEG-47 reveal high sequence fidelity requirements of amyloid fibril elongation.
    Agerschou ED; Schützmann MP; Reppert N; Wördehoff MM; Shaykhalishahi H; Buell AK; Hoyer W
    Biophys Chem; 2021 Feb; 269():106519. PubMed ID: 33333378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic Properties of Human α-Synuclein Related to Propensity to Amyloid Fibril Formation.
    Fujiwara S; Kono F; Matsuo T; Sugimoto Y; Matsumoto T; Narita A; Shibata K
    J Mol Biol; 2019 Aug; 431(17):3229-3245. PubMed ID: 31181290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different p
    Liu Y; Liu J; He X
    J Phys Chem B; 2023 Feb; 127(5):1089-1096. PubMed ID: 36696655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Granular assembly of alpha-synuclein leading to the accelerated amyloid fibril formation with shear stress.
    Bhak G; Lee JH; Hahn JS; Paik SR
    PLoS One; 2009; 4(1):e4177. PubMed ID: 19137068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic insight into the relationship between N-terminal acetylation of α-synuclein and fibril formation rates by NMR and fluorescence.
    Kang L; Janowska MK; Moriarty GM; Baum J
    PLoS One; 2013; 8(9):e75018. PubMed ID: 24058647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How oxidized EGCG remodels α-synuclein fibrils into non-toxic aggregates: insights from computational simulations.
    Gonçalves PB; Palhano FL; Cordeiro Y; Sodero ACR
    Phys Chem Chem Phys; 2023 Jul; 25(28):19182-19194. PubMed ID: 37431676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intrinsic Conformational Preferences and Interactions in α-Synuclein Fibrils: Insights from Molecular Dynamics Simulations.
    Ilie IM; Nayar D; den Otter WK; van der Vegt NFA; Briels WJ
    J Chem Theory Comput; 2018 Jun; 14(6):3298-3310. PubMed ID: 29715424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N- and C-terminal regions of αB-crystallin and Hsp27 mediate inhibition of amyloid nucleation, fibril binding, and fibril disaggregation.
    Selig EE; Zlatic CO; Cox D; Mok YF; Gooley PR; Ecroyd H; Griffin MDW
    J Biol Chem; 2020 Jul; 295(29):9838-9854. PubMed ID: 32417755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of alpha-synuclein fibril assembly by small molecules: analysis using epitope-specific antibodies.
    Masuda M; Hasegawa M; Nonaka T; Oikawa T; Yonetani M; Yamaguchi Y; Kato K; Hisanaga S; Goedert M
    FEBS Lett; 2009 Feb; 583(4):787-91. PubMed ID: 19183551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Familial Mutations May Switch Conformational Preferences in α-Synuclein Fibrils.
    Xu L; Ma B; Nussinov R; Thompson D
    ACS Chem Neurosci; 2017 Apr; 8(4):837-849. PubMed ID: 28075555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.