These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 33998995)

  • 41. Blood-derived amyloid-β protein induces Alzheimer's disease pathologies.
    Bu XL; Xiang Y; Jin WS; Wang J; Shen LL; Huang ZL; Zhang K; Liu YH; Zeng F; Liu JH; Sun HL; Zhuang ZQ; Chen SH; Yao XQ; Giunta B; Shan YC; Tan J; Chen XW; Dong ZF; Zhou HD; Zhou XF; Song W; Wang YJ
    Mol Psychiatry; 2018 Sep; 23(9):1948-1956. PubMed ID: 29086767
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Impact of Amyloid-β on Platelet Mitochondrial Function and Platelet-Mediated Amyloid Aggregation in Alzheimer's Disease.
    Donner L; Feige T; Freiburg C; Toska LM; Reichert AS; Chatterjee M; Elvers M
    Int J Mol Sci; 2021 Sep; 22(17):. PubMed ID: 34502546
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Insights into mitochondrial dysfunction: aging, amyloid-β, and tau-A deleterious trio.
    Schmitt K; Grimm A; Kazmierczak A; Strosznajder JB; Götz J; Eckert A
    Antioxid Redox Signal; 2012 Jun; 16(12):1456-66. PubMed ID: 22117646
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Axonal transport and mitochondrial dysfunction in Alzheimer's disease.
    Riemer J; Kins S
    Neurodegener Dis; 2013; 12(3):111-24. PubMed ID: 23037012
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mitochondria: the common upstream driver of amyloid-β and tau pathology in Alzheimer's disease.
    Silva DF; Esteves AR; Oliveira CR; Cardoso SM
    Curr Alzheimer Res; 2011 Aug; 8(5):563-72. PubMed ID: 21244356
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of Tau Protein on Mitochondrial Functions.
    Epremyan KK; Goleva TN; Zvyagilskaya RA
    Biochemistry (Mosc); 2022 Aug; 87(8):689-701. PubMed ID: 36171651
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Alzheimer-like amyloid and tau alterations associated with cognitive deficit in temporal lobe epilepsy.
    Gourmaud S; Shou H; Irwin DJ; Sansalone K; Jacobs LM; Lucas TH; Marsh ED; Davis KA; Jensen FE; Talos DM
    Brain; 2020 Jan; 143(1):191-209. PubMed ID: 31834353
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synthetic, Cell-Derived, Brain-Derived, and Recombinant β-Amyloid: Modelling Alzheimer's Disease for Research and Drug Development.
    Varshavskaya KB; Mitkevich VA; Makarov AA; Barykin EP
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36499362
    [TBL] [Abstract][Full Text] [Related]  

  • 49. New Insights into the Spontaneous Human Alzheimer's Disease-Like Model Octodon degus: Unraveling Amyloid-β Peptide Aggregation and Age-Related Amyloid Pathology.
    Cisternas P; Zolezzi JM; Lindsay C; Rivera DS; Martinez A; Bozinovic F; Inestrosa NC
    J Alzheimers Dis; 2018; 66(3):1145-1163. PubMed ID: 30412496
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mitochondrial alterations near amyloid plaques in an Alzheimer's disease mouse model.
    Xie H; Guan J; Borrelli LA; Xu J; Serrano-Pozo A; Bacskai BJ
    J Neurosci; 2013 Oct; 33(43):17042-51. PubMed ID: 24155308
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Alzheimer's pathogenesis and its link to the mitochondrion.
    Simoncini C; Orsucci D; Caldarazzo Ienco E; Siciliano G; Bonuccelli U; Mancuso M
    Oxid Med Cell Longev; 2015; 2015():803942. PubMed ID: 25973139
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mitochondrial dysfunction and Alzheimer's disease.
    Maruszak A; Żekanowski C
    Prog Neuropsychopharmacol Biol Psychiatry; 2011 Mar; 35(2):320-30. PubMed ID: 20624441
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Altered mitochondria, energy metabolism, voltage-dependent anion channel, and lipid rafts converge to exhaust neurons in Alzheimer's disease.
    Ferrer I
    J Bioenerg Biomembr; 2009 Oct; 41(5):425-31. PubMed ID: 19798558
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Abnormal tau, mitochondrial dysfunction, impaired axonal transport of mitochondria, and synaptic deprivation in Alzheimer's disease.
    Reddy PH
    Brain Res; 2011 Sep; 1415():136-48. PubMed ID: 21872849
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Molecular and Cellular Basis of Neurodegeneration in Alzheimer's Disease.
    Jeong S
    Mol Cells; 2017 Sep; 40(9):613-620. PubMed ID: 28927263
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Role of Mitochondrial Dysfunction in the Pathology of Amyloid-β.
    Huang Z; Yan Q; Wang Y; Zou Q; Li J; Liu Z; Cai Z
    J Alzheimers Dis; 2020; 78(2):505-514. PubMed ID: 33044180
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Senile dementia associated with amyloid beta protein angiopathy and tau perivascular pathology but not neuritic plaques in patients homozygous for the APOE-epsilon4 allele.
    Vidal R; Calero M; Piccardo P; Farlow MR; Unverzagt FW; Méndez E; Jiménez-Huete A; Beavis R; Gallo G; Gomez-Tortosa E; Ghiso J; Hyman BT; Frangione B; Ghetti B
    Acta Neuropathol; 2000 Jul; 100(1):1-12. PubMed ID: 10912914
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Non-canonical soluble amyloid-beta aggregates and plaque buffering: controversies and future directions for target discovery in Alzheimer's disease.
    Brody DL; Jiang H; Wildburger N; Esparza TJ
    Alzheimers Res Ther; 2017 Aug; 9(1):62. PubMed ID: 28818091
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Application of optogenetic Amyloid-β distinguishes between metabolic and physical damages in neurodegeneration.
    Lim CH; Kaur P; Teo E; Lam VYM; Zhu F; Kibat C; Gruber J; Mathuru AS; Tolwinski NS
    Elife; 2020 Mar; 9():. PubMed ID: 32228858
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The molecular biology of senile plaques and neurofibrillary tangles in Alzheimer's disease.
    Armstrong RA
    Folia Neuropathol; 2009; 47(4):289-99. PubMed ID: 20054780
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.