These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 33999087)

  • 1. A 3D-printed
    Moussus M; Meier M
    Lab Chip; 2021 Jun; 21(13):2557-2564. PubMed ID: 33999087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic systems for plant root imaging.
    Guichard M; Bertran Garcia de Olalla E; Stanley CE; Grossmann G
    Methods Cell Biol; 2020; 160():381-404. PubMed ID: 32896330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The RootChip: an integrated microfluidic chip for plant science.
    Grossmann G; Guo WJ; Ehrhardt DW; Frommer WB; Sit RV; Quake SR; Meier M
    Plant Cell; 2011 Dec; 23(12):4234-40. PubMed ID: 22186371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication routes via projection stereolithography for 3D-printing of microfluidic geometries for nucleic acid amplification.
    Tzivelekis C; Sgardelis P; Waldron K; Whalley R; Huo D; Dalgarno K
    PLoS One; 2020; 15(10):e0240237. PubMed ID: 33112867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 3D printed microfluidic perfusion device for multicellular spheroid cultures.
    Ong LJY; Islam A; DasGupta R; Iyer NG; Leo HL; Toh YC
    Biofabrication; 2017 Sep; 9(4):045005. PubMed ID: 28837043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging the Root Hair Morphology of Arabidopsis Seedlings in a Two-layer Microfluidic Platform.
    Aufrecht JA; Ryan JM; Hasim S; Allison DP; Nebenführ A; Doktycz MJ; Retterer ST
    J Vis Exp; 2017 Aug; (126):. PubMed ID: 28829431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Microfluidic-Like System (MLS) to Grow, Image, and Quantitatively Characterize Rigidity Sensing by Plant's Roots and Root Hair Cells.
    Pereira D; Alline T; Singh G; Chabouté ME; Asnacios A
    Methods Mol Biol; 2023; 2600():121-131. PubMed ID: 36587094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and use of the dual-flow-RootChip for the imaging of
    Stanley CE; Shrivastava J; Brugman R; Heinzelmann E; Frajs V; Bühler A; van Swaay D; Grossmann G
    Bio Protoc; 2018 Sep; 8(18):e3010. PubMed ID: 34395800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual-flow-RootChip reveals local adaptations of roots towards environmental asymmetry at the physiological and genetic levels.
    Stanley CE; Shrivastava J; Brugman R; Heinzelmann E; van Swaay D; Grossmann G
    New Phytol; 2018 Feb; 217(3):1357-1369. PubMed ID: 29125191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sealing 3D-printed parts to poly(dimethylsiloxane) for simple fabrication of Microfluidic devices.
    Carrell CS; McCord CP; Wydallis RM; Henry CS
    Anal Chim Acta; 2020 Aug; 1124():78-84. PubMed ID: 32534678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Live imaging of root-bacteria interactions in a microfluidics setup.
    Massalha H; Korenblum E; Malitsky S; Shapiro OH; Aharoni A
    Proc Natl Acad Sci U S A; 2017 Apr; 114(17):4549-4554. PubMed ID: 28348235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs.
    Knowlton S; Yu CH; Ersoy F; Emadi S; Khademhosseini A; Tasoglu S
    Biofabrication; 2016 Jun; 8(2):025019. PubMed ID: 27321481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly Fluorinated Methacrylates for Optical 3D Printing of Microfluidic Devices.
    Kotz F; Risch P; Helmer D; Rapp BE
    Micromachines (Basel); 2018 Mar; 9(3):. PubMed ID: 30424049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dual-flow RootChip enables quantification of bi-directional calcium signaling in primary roots.
    Allan C; Tayagui A; Hornung R; Nock V; Meisrimler CN
    Front Plant Sci; 2022; 13():1040117. PubMed ID: 36704158
    [No Abstract]   [Full Text] [Related]  

  • 15. 3D printed mold leachates in PDMS microfluidic devices.
    de Almeida Monteiro Melo Ferraz M; Nagashima JB; Venzac B; Le Gac S; Songsasen N
    Sci Rep; 2020 Jan; 10(1):994. PubMed ID: 31969661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Non-Cytotoxic Resin for Micro-Stereolithography for Cell Cultures of HUVECs.
    Männel MJ; Fischer C; Thiele J
    Micromachines (Basel); 2020 Feb; 11(3):. PubMed ID: 32111058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell adhesion and proliferation on common 3D printing materials used in stereolithography of microfluidic devices.
    Piironen K; Haapala M; Talman V; Järvinen P; Sikanen T
    Lab Chip; 2020 Jun; 20(13):2372-2382. PubMed ID: 32500123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the Impact of the Fabrication Method on the Performance of 3D Printed Mixers.
    Zeraatkar M; Filippini D; Percoco G
    Micromachines (Basel); 2019 Apr; 10(5):. PubMed ID: 31052338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing Microfluidic Performance of Three-Dimensional (3D) Printing Platforms.
    Macdonald NP; Cabot JM; Smejkal P; Guijt RM; Paull B; Breadmore MC
    Anal Chem; 2017 Apr; 89(7):3858-3866. PubMed ID: 28281349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of printing direction on stress distortion of three-dimensional printed dentures using stereolithography technology.
    Hada T; Kanazawa M; Iwaki M; Arakida T; Minakuchi S
    J Mech Behav Biomed Mater; 2020 Oct; 110():103949. PubMed ID: 32957241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.