These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 33999087)

  • 21. Fabrication of Hard-Soft Microfluidic Devices Using Hybrid 3D Printing.
    Ruiz C; Kadimisetty K; Yin K; Mauk MG; Zhao H; Liu C
    Micromachines (Basel); 2020 Jun; 11(6):. PubMed ID: 32492980
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Accuracy, reproducibility, and dimensional stability of additively manufactured surgical templates.
    Chen L; Lin WS; Polido WD; Eckert GJ; Morton D
    J Prosthet Dent; 2019 Sep; 122(3):309-314. PubMed ID: 30948293
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabrication of a Malaria-Ab ELISA Bioassay Platform with Utilization of Syringe-Based and 3D Printed Assay Automation.
    Lim C; Lee Y; Kulinsky L
    Micromachines (Basel); 2018 Oct; 9(10):. PubMed ID: 30424435
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 3D Printed Microfluidics.
    Nielsen AV; Beauchamp MJ; Nordin GP; Woolley AT
    Annu Rev Anal Chem (Palo Alto Calif); 2020 Jun; 13(1):45-65. PubMed ID: 31821017
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fabrication of Microfluidic Devices for Emulsion Formation by Microstereolithography.
    Männel MJ; Baysak E; Thiele J
    Molecules; 2021 May; 26(9):. PubMed ID: 34068649
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3D Printing Solutions for Microfluidic Chip-To-World Connections.
    van den Driesche S; Lucklum F; Bunge F; Vellekoop MJ
    Micromachines (Basel); 2018 Feb; 9(2):. PubMed ID: 30393347
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A microfluidic device and computational platform for high-throughput live imaging of gene expression.
    Busch W; Moore BT; Martsberger B; Mace DL; Twigg RW; Jung J; Pruteanu-Malinici I; Kennedy SJ; Fricke GK; Clark RL; Ohler U; Benfey PN
    Nat Methods; 2012 Nov; 9(11):1101-6. PubMed ID: 23023597
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamic imaging of cytosolic zinc in Arabidopsis roots combining FRET sensors and RootChip technology.
    Lanquar V; Grossmann G; Vinkenborg JL; Merkx M; Thomine S; Frommer WB
    New Phytol; 2014 Apr; 202(1):198-208. PubMed ID: 24372442
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-Precision Stereolithography of Biomicrofluidic Devices.
    Kuo AP; Bhattacharjee N; Lee YS; Castro K; Kim YT; Folch A
    Adv Mater Technol; 2019 Jun; 4(6):. PubMed ID: 32490168
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The precision and reliability evaluation of 3-dimensional printed damaged bone and prosthesis models by stereo lithography appearance.
    Zou Y; Han Q; Weng X; Zou Y; Yang Y; Zhang K; Yang K; Xu X; Wang C; Qin Y; Wang J
    Medicine (Baltimore); 2018 Feb; 97(6):e9797. PubMed ID: 29419675
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Desktop-Stereolithography 3D-Printing of a Poly(dimethylsiloxane)-Based Material with Sylgard-184 Properties.
    Bhattacharjee N; Parra-Cabrera C; Kim YT; Kuo AP; Folch A
    Adv Mater; 2018 May; 30(22):e1800001. PubMed ID: 29656459
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 3D Printing: An Alternative Microfabrication Approach with Unprecedented Opportunities in Design.
    Balakrishnan HK; Badar F; Doeven EH; Novak JI; Merenda A; Dumée LF; Loy J; Guijt RM
    Anal Chem; 2021 Jan; 93(1):350-366. PubMed ID: 33263392
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D Printed Microfluidic Features Using Dose Control in X, Y, and Z Dimensions.
    Beauchamp MJ; Gong H; Woolley AT; Nordin GP
    Micromachines (Basel); 2018 Jun; 9(7):. PubMed ID: 30424259
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Accessing microfluidics through feature-based design software for 3D printing.
    Shankles PG; Millet LJ; Aufrecht JA; Retterer ST
    PLoS One; 2018; 13(3):e0192752. PubMed ID: 29596418
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hybrid Three Dimensionally Printed Paper-Based Microfluidic Platform for Investigating a Cell's Apoptosis and Intracellular Cross-Talk.
    Liu P; Li B; Fu L; Huang Y; Man M; Qi J; Sun X; Kang Q; Shen D; Chen L
    ACS Sens; 2020 Feb; 5(2):464-473. PubMed ID: 32013403
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adhesive bonding strategies to fabricate high-strength and transparent 3D printed microfluidic device.
    Kecili S; Tekin HC
    Biomicrofluidics; 2020 Mar; 14(2):024113. PubMed ID: 32341724
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional Imaging of Microbial Interactions With Tree Roots Using a Microfluidics Setup.
    Noirot-Gros MF; Shinde SV; Akins C; Johnson JL; Zerbs S; Wilton R; Kemner KM; Noirot P; Babnigg G
    Front Plant Sci; 2020; 11():408. PubMed ID: 32351525
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D-Printed Microfluidic Devices for Enhanced Online Sampling and Direct Optical Measurements.
    Monia Kabandana GK; Jones CG; Sharifi SK; Chen C
    ACS Sens; 2020 Jul; 5(7):2044-2051. PubMed ID: 32363857
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microfluidic platforms for plant cells studies.
    Sanati Nezhad A
    Lab Chip; 2014 Sep; 14(17):3262-74. PubMed ID: 24984591
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microfluidics-Enabled Multimaterial Maskless Stereolithographic Bioprinting.
    Miri AK; Nieto D; Iglesias L; Goodarzi Hosseinabadi H; Maharjan S; Ruiz-Esparza GU; Khoshakhlagh P; Manbachi A; Dokmeci MR; Chen S; Shin SR; Zhang YS; Khademhosseini A
    Adv Mater; 2018 Jul; 30(27):e1800242. PubMed ID: 29737048
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.