These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 33999273)
1. Experimental assessment of convective and radiative heat transfer coefficients for various clothing ensembles. Gao S; Ooka R; Oh W Int J Biometeorol; 2021 Nov; 65(11):1811-1822. PubMed ID: 33999273 [TBL] [Abstract][Full Text] [Related]
2. Convective and radiative heat transfer coefficients for individual human body segments. de Dear RJ; Arens E; Hui Z; Oguro M Int J Biometeorol; 1997 May; 40(3):141-56. PubMed ID: 9195861 [TBL] [Abstract][Full Text] [Related]
3. Measuring the human body's microclimate using a thermal manikin. Voelker C; Maempel S; Kornadt O Indoor Air; 2014 Dec; 24(6):567-79. PubMed ID: 24666331 [TBL] [Abstract][Full Text] [Related]
4. Analytical study of the heat loss attenuation by clothing on thermal manikins under radiative heat loads. Den Hartog EA; Havenith G Int J Occup Saf Ergon; 2010; 16(2):245-61. PubMed ID: 20540843 [TBL] [Abstract][Full Text] [Related]
5. The effect of rowing headgear on forced convective heat loss and radiant heat gain on a thermal manikin headform. Bogerd CP; Brühwiler PA; Heus R J Sports Sci; 2008 May; 26(7):733-41. PubMed ID: 18409104 [TBL] [Abstract][Full Text] [Related]
6. Heat and mass transfer from a baby manikin: impact of a chemical warfare protective bag. Danielsson U Eur J Appl Physiol; 2004 Sep; 92(6):689-93. PubMed ID: 15150661 [TBL] [Abstract][Full Text] [Related]
7. The influence of sweating on the heat transmission properties of cold protective clothing studied with a sweating thermal manikin. Meinander H; Hellsten M Int J Occup Saf Ergon; 2004; 10(3):263-9. PubMed ID: 15377411 [TBL] [Abstract][Full Text] [Related]
8. Advanced modelling of the transport phenomena across horizontal clothing microclimates with natural convection. Mayor TS; Couto S; Psikuta A; Rossi RM Int J Biometeorol; 2015 Dec; 59(12):1875-89. PubMed ID: 25994799 [TBL] [Abstract][Full Text] [Related]
9. [Physiologic adaptation of the thermal manikin]. Bischof W; Bánhidi L Z Gesamte Hyg; 1989 Dec; 35(12):723-5. PubMed ID: 2631467 [TBL] [Abstract][Full Text] [Related]
10. Thermal insulation and clothing area factors of typical Arabian Gulf clothing ensembles for males and females: measurements using thermal manikins. Al-ajmi FF; Loveday DL; Bedwell KH; Havenith G Appl Ergon; 2008 May; 39(3):407-14. PubMed ID: 18045571 [TBL] [Abstract][Full Text] [Related]
11. Mannequin-assessed dry-heat exchanges in the incubator-nursed newborn. Apedoh A; el Hajajji A; Telliez F; Bouferrache B; Libert JP; Rachid A Biomed Instrum Technol; 1999; 33(5):446-54. PubMed ID: 10511915 [TBL] [Abstract][Full Text] [Related]
12. Comparison of Thermal Manikin Modeling and Human Subjects' Response During Use of Cooling Devices Under Personal Protective Ensembles in the Heat. Quinn T; Kim JH; Seo Y; Coca A Prehosp Disaster Med; 2018 Jun; 33(3):279-287. PubMed ID: 29669616 [TBL] [Abstract][Full Text] [Related]
13. Heat and water vapour transfer of protective clothing systems in a cold environment, measured with a newly developed sweating thermal manikin. Fukazawa T; Lee G; Matsuoka T; Kano K; Tochihara Y Eur J Appl Physiol; 2004 Sep; 92(6):645-8. PubMed ID: 15221398 [TBL] [Abstract][Full Text] [Related]
14. Determination of clothing evaporative resistance on a sweating thermal manikin in an isothermal condition: heat loss method or mass loss method? Wang F; Gao C; Kuklane K; Holmér I Ann Occup Hyg; 2011 Aug; 55(7):775-83. PubMed ID: 21669906 [TBL] [Abstract][Full Text] [Related]
15. Wind-chill equations predicting whole-body heat loss for a range of typical civilian outdoor clothing ensembles. Wyon DP Scand J Work Environ Health; 1989; 15 Suppl 1():76-83. PubMed ID: 2609124 [TBL] [Abstract][Full Text] [Related]
16. Protection against cold in prehospital care: evaporative heat loss reduction by wet clothing removal or the addition of a vapor barrier--a thermal manikin study. Henriksson O; Lundgren P; Kuklane K; Holmér I; Naredi P; Bjornstig U Prehosp Disaster Med; 2012 Feb; 27(1):53-8. PubMed ID: 22445055 [TBL] [Abstract][Full Text] [Related]
17. Thermal protection study of bladder compensatory suit using a heat transfer model. Tian Y; Li J; Zhang H; Xue L; Lei W; Ding L Work; 2017; 58(4):415-425. PubMed ID: 29254123 [TBL] [Abstract][Full Text] [Related]
18. Prediction of clothing thermal insulation and moisture vapour resistance of the clothed body walking in wind. Qian X; Fan J Ann Occup Hyg; 2006 Nov; 50(8):833-42. PubMed ID: 16857703 [TBL] [Abstract][Full Text] [Related]
19. Theoretical analysis of three methods for calculating thermal insulation of clothing from thermal manikin. Huang J Ann Occup Hyg; 2012 Jul; 56(6):728-35. PubMed ID: 22798547 [TBL] [Abstract][Full Text] [Related]
20. Measurements of clothing insulation with a thermal manikin operating under the thermal comfort regulation mode: comparative analysis of the calculation methods. Oliveira AV; Gaspar AR; Quintela DA Eur J Appl Physiol; 2008 Nov; 104(4):679-88. PubMed ID: 18633635 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]