These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 3400)
1. Anaerobic release of fluoride from halothane. Relationship to the binding of halothane metabolites to hepatic cellular constituents. Van Dyke RA; Gandolf AJ Drug Metab Dispos; 1976; 4(1):40-4. PubMed ID: 3400 [TBL] [Abstract][Full Text] [Related]
2. The release of inorganic fluoride from halothane and halothane metabolites by cytochrome P-450, hemin, and hemoglobin. Baker MT; Nelson RM; Van Dyke RA Drug Metab Dispos; 1983; 11(4):308-11. PubMed ID: 6137335 [TBL] [Abstract][Full Text] [Related]
3. Oxygen concentrations required for reductive defluorination of halothane by rat hepatic microsomes. Lind RC; Gandolfi AJ; Sipes IG; Brown BR; Waters SJ Anesth Analg; 1986 Aug; 65(8):835-9. PubMed ID: 3729018 [TBL] [Abstract][Full Text] [Related]
4. Lipid binding of a halothane metabolite. Relationship to lipid peroxidation in vitro. Wood CL; Gandolfi AJ; Van Dyke RA Drug Metab Dispos; 1976; 4(4):305-13. PubMed ID: 8284 [TBL] [Abstract][Full Text] [Related]
5. Stimulatory effects of halothane and isoflurane on fluoride release and cytochrome P-450 loss caused by metabolism of 2-chloro-1,1-difluoroethene, a halothane metabolite. Baker MT; Bates JN; Leff SV Anesth Analg; 1987 Nov; 66(11):1141-7. PubMed ID: 2889401 [TBL] [Abstract][Full Text] [Related]
6. Oxidative defluorination of 1,1,1,2-tetrafluoroethane by rat liver microsomes. Olson MJ; Reidy CA; Johnson JT; Pederson TC Drug Metab Dispos; 1990; 18(6):992-8. PubMed ID: 1981550 [TBL] [Abstract][Full Text] [Related]
7. Hypoxia and halothane metabolism in vivo: release of inorganic fluoride and halothane metabolite binding to cellular constituents. Widger LA; Gandolfi AJ; Van Dyke RA Anesthesiology; 1976 Mar; 44(3):197-201. PubMed ID: 1267885 [TBL] [Abstract][Full Text] [Related]
8. Characterization of halothane oxidation by hepatic microsomes and purified cytochromes P-450 using a gas chromatographic mass spectrometric assay. Gruenke LD; Konopka K; Koop DR; Waskell LA J Pharmacol Exp Ther; 1988 Aug; 246(2):454-9. PubMed ID: 3404442 [TBL] [Abstract][Full Text] [Related]
9. In vitro studies on irreversible binding of halothane metabolite to microsomes. Van Dyke RA; Wood CL Drug Metab Dispos; 1975; 3(1):51-7. PubMed ID: 234835 [TBL] [Abstract][Full Text] [Related]
10. Inhibitory effect of paraquat on biotransformation of halothane in rabbit liver microsomes. Kawamoto M; Fujii K; Yuge O; Morio M Hiroshima J Med Sci; 1989 Dec; 38(4):161-7. PubMed ID: 2637243 [TBL] [Abstract][Full Text] [Related]
11. Reductive metabolism of halothane by cytochrome P450 isoforms in rats and humans. Chow T; Imaoka S; Hiroi T; Funae Y Res Commun Mol Pathol Pharmacol; 1996 Sep; 93(3):363-74. PubMed ID: 8896047 [TBL] [Abstract][Full Text] [Related]
12. Biotransformation of halothane in guinea pig liver slices. Ghantous HN; Fernando J; Gandolfi AJ; Brendel K Drug Metab Dispos; 1990; 18(4):514-8. PubMed ID: 1976077 [TBL] [Abstract][Full Text] [Related]
13. Metabolic activation of the halothane metabolite, [14C]2-chloro-1,1-difluoroethene, in hepatic microsomes. Baker MT; Bates JN Drug Metab Dispos; 1988; 16(2):169-72. PubMed ID: 2898328 [TBL] [Abstract][Full Text] [Related]
14. The in vitro metabolism of halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) by hepatic microsomal cytochrome P-450. Karashima D; Hirokata Y; Shigematsu A; Furukawa T J Pharmacol Exp Ther; 1977 Nov; 203(2):409-16. PubMed ID: 909072 [TBL] [Abstract][Full Text] [Related]
15. A comparative study on the irreversible binding of labeled halothane trichlorofluoromethane, chloroform, and carbon tetrachloride to hepatic protein and lipids in vitro and in vivo. Uehleke H; Werner T Arch Toxicol; 1975 Dec; 34(4):289-308. PubMed ID: 3152 [TBL] [Abstract][Full Text] [Related]
16. Characterization of the NADPH-dependent covalent binding of [14C]halothane to human liver microsomes: a role for cytochrome P4502E1 at low substrate concentrations. Madan A; Parkinson A Drug Metab Dispos; 1996 Dec; 24(12):1307-13. PubMed ID: 8971135 [TBL] [Abstract][Full Text] [Related]
17. Microsomal lipids as targets for halothane metabolites. Legler D; Van Dyke RA Res Commun Chem Pathol Pharmacol; 1982 Sep; 37(3):395-402. PubMed ID: 7178651 [TBL] [Abstract][Full Text] [Related]
18. Cytochrome P450 inactivation during reductive metabolism of 1,1-dichloro-2,2,2-trifluoroethane (HCFC-123) by phenobarbital- and pyridine-induced rat liver microsomes. Ferrara R; Tolando R; King LJ; Manno M Toxicol Appl Pharmacol; 1997 Apr; 143(2):420-8. PubMed ID: 9144458 [TBL] [Abstract][Full Text] [Related]
19. Effects of in vivo pretreatment with various barbiturates on anaerobic halothane metabolism in rat liver microsomes. Taira Y; Fujii K; Kikuchi H; Yuge O; Morio M Hiroshima J Med Sci; 1990 Dec; 39(4):125-30. PubMed ID: 2086563 [TBL] [Abstract][Full Text] [Related]
20. Bioactivation and covalent binding of halothane in vitro: studies with [3H]- and [14C]halothane. Gandolfi AJ; White RD; Sipes IG; Pohl LR J Pharmacol Exp Ther; 1980 Sep; 214(3):721-5. PubMed ID: 7400975 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]