These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 34000002)

  • 21. Domain Generalization with Correlated Style Uncertainty.
    Zhang Z; Wang B; Jha D; Demir U; Bagci U
    IEEE Winter Conf Appl Comput Vis; 2024 Jan; 2024():1989-1998. PubMed ID: 38978834
    [TBL] [Abstract][Full Text] [Related]  

  • 22. scAWMV: an adaptively weighted multi-view learning framework for the integrative analysis of parallel scRNA-seq and scATAC-seq data.
    Zeng P; Ma Y; Lin Z
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36383176
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Learning to segment subcortical structures from noisy annotations with a novel uncertainty-reliability aware learning framework.
    Li X; Wei Y; Hu Q; Wang C; Yang J
    Comput Biol Med; 2022 Dec; 151(Pt B):106326. PubMed ID: 36442274
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting cancer drug response using parallel heterogeneous graph convolutional networks with neighborhood interactions.
    Peng W; Liu H; Dai W; Yu N; Wang J
    Bioinformatics; 2022 Sep; 38(19):4546-4553. PubMed ID: 35997568
    [TBL] [Abstract][Full Text] [Related]  

  • 25. TGSA: protein-protein association-based twin graph neural networks for drug response prediction with similarity augmentation.
    Zhu Y; Ouyang Z; Chen W; Feng R; Chen DZ; Cao J; Wu J
    Bioinformatics; 2022 Jan; 38(2):461-468. PubMed ID: 34559177
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DeepCDR: a hybrid graph convolutional network for predicting cancer drug response.
    Liu Q; Hu Z; Jiang R; Zhou M
    Bioinformatics; 2020 Dec; 36(Suppl_2):i911-i918. PubMed ID: 33381841
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Integrating multi-OMICS data through sparse canonical correlation analysis for the prediction of complex traits: a comparison study.
    Rodosthenous T; Shahrezaei V; Evangelou M
    Bioinformatics; 2020 Nov; 36(17):4616-4625. PubMed ID: 32437529
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neural Collective Matrix Factorization for integrated analysis of heterogeneous biomedical data.
    Mariappan R; Jayagopal A; Sien HZ; Rajan V
    Bioinformatics; 2022 Sep; 38(19):4554-4561. PubMed ID: 35929808
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Towards reliable named entity recognition in the biomedical domain.
    Giorgi JM; Bader GD
    Bioinformatics; 2020 Jan; 36(1):280-286. PubMed ID: 31218364
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single-cell RNA-seq data semi-supervised clustering and annotation via structural regularized domain adaptation.
    Chen L; He Q; Zhai Y; Deng M
    Bioinformatics; 2021 May; 37(6):775-784. PubMed ID: 33098418
    [TBL] [Abstract][Full Text] [Related]  

  • 31. forgeNet: a graph deep neural network model using tree-based ensemble classifiers for feature graph construction.
    Kong Y; Yu T
    Bioinformatics; 2020 Jun; 36(11):3507-3515. PubMed ID: 32163118
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gene-centric multi-omics integration with convolutional encoders for cancer drug response prediction.
    Lee M; Kim PJ; Joe H; Kim HG
    Comput Biol Med; 2022 Dec; 151(Pt A):106192. PubMed ID: 36327883
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deep learning based domain adaptation for mitochondria segmentation on EM volumes.
    Franco-Barranco D; Pastor-Tronch J; González-Marfil A; Muñoz-Barrutia A; Arganda-Carreras I
    Comput Methods Programs Biomed; 2022 Jul; 222():106949. PubMed ID: 35753105
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MTM: a multi-task learning framework to predict individualized tissue gene expression profiles.
    He G; Chen M; Bian Y; Yang E
    Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37279739
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cross-type biomedical named entity recognition with deep multi-task learning.
    Wang X; Zhang Y; Ren X; Zhang Y; Zitnik M; Shang J; Langlotz C; Han J
    Bioinformatics; 2019 May; 35(10):1745-1752. PubMed ID: 30307536
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Uncertainty-aware multi-view co-training for semi-supervised medical image segmentation and domain adaptation.
    Xia Y; Yang D; Yu Z; Liu F; Cai J; Yu L; Zhu Z; Xu D; Yuille A; Roth H
    Med Image Anal; 2020 Oct; 65():101766. PubMed ID: 32623276
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unsupervised construction of computational graphs for gene expression data with explicit structural inductive biases.
    Scherer P; Trębacz M; Simidjievski N; Viñas R; Shams Z; Terre HA; Jamnik M; Liò P
    Bioinformatics; 2022 Feb; 38(5):1320-1327. PubMed ID: 34888618
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multi-agent Feature Selection for Integrative Multi-omics Analysis.
    Tabakhi S; Lu H
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1638-1642. PubMed ID: 36086594
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Global proteomics profiling improves drug sensitivity prediction: results from a multi-omics, pan-cancer modeling approach.
    Ali M; Khan SA; Wennerberg K; Aittokallio T
    Bioinformatics; 2018 Apr; 34(8):1353-1362. PubMed ID: 29186355
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.