BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 34000034)

  • 1. Characterization of micron-scale protein-depleted plasma membrane domains in phosphatidylserine-deficient yeast cells.
    Mioka T; Guo T; Wang S; Tsuji T; Kishimoto T; Fujimoto T; Tanaka K
    J Cell Sci; 2022 Mar; 135(5):. PubMed ID: 34000034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Yeast lipids can phase-separate into micrometer-scale membrane domains.
    Klose C; Ejsing CS; García-Sáez AJ; Kaiser HJ; Sampaio JL; Surma MA; Shevchenko A; Schwille P; Simons K
    J Biol Chem; 2010 Sep; 285(39):30224-32. PubMed ID: 20647309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanodomains can persist at physiologic temperature in plasma membrane vesicles and be modulated by altering cell lipids.
    Li G; Wang Q; Kakuda S; London E
    J Lipid Res; 2020 May; 61(5):758-766. PubMed ID: 31964764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Periprotein lipidomes of
    van 't Klooster JS; Cheng TY; Sikkema HR; Jeucken A; Moody B; Poolman B
    Elife; 2020 Apr; 9():. PubMed ID: 32301705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yeast cells actively tune their membranes to phase separate at temperatures that scale with growth temperatures.
    Leveille CL; Cornell CE; Merz AJ; Keller SL
    Proc Natl Acad Sci U S A; 2022 Jan; 119(4):. PubMed ID: 35046036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and characterization of the plasma membrane from the yeast Pichia pastoris.
    Grillitsch K; Tarazona P; Klug L; Wriessnegger T; Zellnig G; Leitner E; Feussner I; Daum G
    Biochim Biophys Acta; 2014 Jul; 1838(7):1889-97. PubMed ID: 24680652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gel domains in the plasma membrane of Saccharomyces cerevisiae: highly ordered, ergosterol-free, and sphingolipid-enriched lipid rafts.
    Aresta-Branco F; Cordeiro AM; Marinho HS; Cyrne L; Antunes F; de Almeida RF
    J Biol Chem; 2011 Feb; 286(7):5043-54. PubMed ID: 21127065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipids and lipid domains of the yeast vacuole.
    Tsuji T; Fujimoto T
    Biochem Soc Trans; 2018 Oct; 46(5):1047-1054. PubMed ID: 30242116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of the yeast phosphatidylserine transfer protein with artificial and biological membranes.
    Gaigg B; Lafer G; Paltauf F; Daum G
    Biochim Biophys Acta; 1993 Mar; 1146(2):301-4. PubMed ID: 8452864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Physical arrangement of membrane lipids susceptible to being used in the process of cell sorting of proteins].
    Wolf C; Quinn P; Koumanov K; Chachaty C; Tenchov B
    J Soc Biol; 1999; 193(2):117-23. PubMed ID: 10451343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of membrane domains created during the budding of vesicular stomatitis virus. A model for selective lipid and protein sorting in biological membranes.
    Luan P; Yang L; Glaser M
    Biochemistry; 1995 Aug; 34(31):9874-83. PubMed ID: 7543280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane properties modulate the activity of a phosphatidylinositol transfer protein from the yeast, Saccharomyces cerevisiae.
    Szolderits G; Hermetter A; Paltauf F; Daum G
    Biochim Biophys Acta; 1989 Nov; 986(2):301-9. PubMed ID: 2686754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phospholipid flippases and Sfk1p, a novel regulator of phospholipid asymmetry, contribute to low permeability of the plasma membrane.
    Mioka T; Fujimura-Kamada K; Mizugaki N; Kishimoto T; Sano T; Nunome H; Williams DE; Andersen RJ; Tanaka K
    Mol Biol Cell; 2018 May; 29(10):1203-1218. PubMed ID: 29540528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endoplasmic reticulum-plasma membrane contact sites integrate sterol and phospholipid regulation.
    Quon E; Sere YY; Chauhan N; Johansen J; Sullivan DP; Dittman JS; Rice WJ; Chan RB; Di Paolo G; Beh CT; Menon AK
    PLoS Biol; 2018 May; 16(5):e2003864. PubMed ID: 29782498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Yeast Sphingolipid-Enriched Domains and Membrane Compartments in the Absence of Mannosyldiinositolphosphorylceramide.
    Bento-Oliveira A; Santos FC; Marquês JT; Paulo PMR; Korte T; Herrmann A; Marinho HS; de Almeida RFM
    Biomolecules; 2020 Jun; 10(6):. PubMed ID: 32517183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipid raft-based membrane compartmentation of a plant transport protein expressed in Saccharomyces cerevisiae.
    Grossmann G; Opekarova M; Novakova L; Stolz J; Tanner W
    Eukaryot Cell; 2006 Jun; 5(6):945-53. PubMed ID: 16757742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of membrane cholesterol partition coefficient using a lipid vesicle-cyclodextrin binary system: effect of phospholipid acyl chain unsaturation and headgroup composition.
    Niu SL; Litman BJ
    Biophys J; 2002 Dec; 83(6):3408-15. PubMed ID: 12496107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biophysical Analysis of Lipid Domains in Mammalian and Yeast Membranes by Fluorescence Spectroscopy.
    Sousa C; Santos FC; Bento-Oliveira A; Mestre B; Silva LC; de Almeida RFM
    Methods Mol Biol; 2021; 2187():247-269. PubMed ID: 32770511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of complex sphingolipids and phosphatidylserine in endosomal trafficking in yeast Saccharomyces cerevisiae.
    Tani M; Kuge O
    Mol Microbiol; 2012 Dec; 86(5):1262-80. PubMed ID: 23062277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipid-Mediated Association of the Slg1 Transmembrane Domains in Yeast Plasma Membranes.
    Alavizargar A; Elting A; Wedlich-Söldner R; Heuer A
    J Phys Chem B; 2022 May; 126(17):3240-3256. PubMed ID: 35446028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.