BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 34000070)

  • 1. Post-anthesis thermal stress induces differential accumulation of bioactive compounds in field-grown barley.
    Martínez-Subirà M; Romero MP; Moralejo M; Macià A; Puig E; Savin R; Romagosa I
    J Sci Food Agric; 2021 Dec; 101(15):6496-6504. PubMed ID: 34000070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of Rising Temperature in the Deposition Patterns of Bioactive Compounds in Field Grown Food Barley Grains.
    Martínez-Subirà M; Moralejo M; Puig E; Romero MP; Savin R; Romagosa I
    Plants (Basel); 2021 Mar; 10(3):. PubMed ID: 33810185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of bioactive compounds in cereals. Study of wheat, barley, oat and selected grain products.
    Nogala-Kałucka M; Kawka A; Dwiecki K; Siger A
    Acta Sci Pol Technol Aliment; 2020; 19(4):405-423. PubMed ID: 33179481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytochemical composition and β-glucan content of barley genotypes from two different geographic origins for human health food production.
    Martínez M; Motilva MJ; López de Las Hazas MC; Romero MP; Vaculova K; Ludwig IA
    Food Chem; 2018 Apr; 245():61-70. PubMed ID: 29287416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genotype, environment and G × E interaction influence (1,3;1,4)-β-d-glucan fine structure in barley (Hordeum vulgare L.).
    Cory AT; Gangola MP; Anyia A; Båga M; Chibbar RN
    J Sci Food Agric; 2017 Feb; 97(3):743-752. PubMed ID: 27145288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimulation of Phenolics, Antioxidant and α-Glucosidase Inhibitory Activities During Barley (Hordeum vulgare L.) Seed Germination.
    Ha KS; Jo SH; Mannam V; Kwon YI; Apostolidis E
    Plant Foods Hum Nutr; 2016 Jun; 71(2):211-7. PubMed ID: 27188780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NaCl stress on physio-biochemical metabolism and antioxidant capacity in germinated hulless barley (Hordeum vulgare L.).
    Ma Y; Wang P; Chen Z; Gu Z; Yang R
    J Sci Food Agric; 2019 Mar; 99(4):1755-1764. PubMed ID: 30226277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Growth Conditions and Genotype on Barley Yield and β-Glucan Content of Kernels and Malt.
    Tomasi I; Sileoni V; Marconi O; Bonciarelli U; Guiducci M; Maranghi S; Perretti G
    J Agric Food Chem; 2019 Jun; 67(22):6324-6335. PubMed ID: 31083935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Barley grain (1,3;1,4)-β-glucan content: effects of transcript and sequence variation in genes encoding the corresponding synthase and endohydrolase enzymes.
    Garcia-Gimenez G; Russell J; Aubert MK; Fincher GB; Burton RA; Waugh R; Tucker MR; Houston K
    Sci Rep; 2019 Nov; 9(1):17250. PubMed ID: 31754200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrothermal grain pre-processing and ultra-fine milling for the production of durum wheat flour fractions with high nutritional value.
    Ciccoritti R; Terracciano G; Cammerata A; Sgrulletta D; Del Frate V; Gazza L; Nocente F
    Food Sci Technol Int; 2018 Apr; 24(3):242-250. PubMed ID: 29186998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing the production of phenolic compounds during barley germination by using chitooligosaccharides to improve the antioxidant capacity of malt.
    Guo X; Yu Z; Zhang M; Tang W; Sun Y; Li X
    Biotechnol Lett; 2018 Oct; 40(9-10):1335-1341. PubMed ID: 29876794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of functional spaghetti enriched in bioactive compounds using barley coarse fraction obtained by air classification.
    Verardo V; Gómez-Caravaca AM; Messia MC; Marconi E; Caboni MF
    J Agric Food Chem; 2011 Sep; 59(17):9127-34. PubMed ID: 21806068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenolic acids profile, nutritional and phytochemical compounds, antioxidant properties in colored barley grown in southern Italy.
    Suriano S; Iannucci A; Codianni P; Fares C; Russo M; Pecchioni N; Marciello U; Savino M
    Food Res Int; 2018 Nov; 113():221-233. PubMed ID: 30195516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beta-Glucan and Phenolic Compounds: Their Concentration and Behavior during in Vitro Gastrointestinal Digestion and Colonic Fermentation of Different Barley-Based Food Products.
    Mosele JI; Motilva MJ; Ludwig IA
    J Agric Food Chem; 2018 Aug; 66(34):8966-8975. PubMed ID: 30080960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The chemical composition of barley grain (Hordeum vulgare L.) landraces from the Canary Islands.
    Panizo-Casado M; Déniz-Expósito P; Rodríguez-Galdón B; Afonso-Morales D; Ríos-Mesa D; Díaz-Romero C; Rodríguez-Rodríguez EM
    J Food Sci; 2020 Jun; 85(6):1725-1734. PubMed ID: 32484938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes caused by genotype and environmental conditions in beta-glucan content of spring barley for dietetically beneficial human nutrition.
    Ehrenbergerová J; Brezinová Belcredi N; Psota V; Hrstková P; Cerkal R; Newman CW
    Plant Foods Hum Nutr; 2008 Sep; 63(3):111-7. PubMed ID: 18551369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of two whole-grain barley varieties on caecal SCFA, gut microbiota and plasma inflammatory markers in rats consuming low- and high-fat diets.
    Zhong Y; Marungruang N; Fåk F; Nyman M
    Br J Nutr; 2015 May; 113(10):1558-70. PubMed ID: 25864430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Profile of phenolic compounds and antioxidant activity of organically and conventionally grown black-grain barley genotypes treated with biostimulant.
    Nowak R; Szczepanek M; Kobus-Cisowska J; Stuper-Szablewska K; Dziedziński M; Błaszczyk K
    PLoS One; 2023; 18(7):e0288428. PubMed ID: 37437056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The location of (1-3)-beta-glucan in the nucellar projection and in the vascular tissue of the crease in developing barley grain using a (1-3)-beta-glucan-specific monoclonal antibody.
    Asthir B; Spoor W; Duffus C; Parton RM
    Planta; 2001 Nov; 214(1):85-8. PubMed ID: 11762174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential changes in grain ultrastructure, amylase, protein and amino acid profiles between Tibetan wild and cultivated barleys under drought and salinity alone and combined stress.
    Ahmed IM; Cao F; Han Y; Nadira UA; Zhang G; Wu F
    Food Chem; 2013 Dec; 141(3):2743-50. PubMed ID: 23871019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.