BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 34000093)

  • 1. Role of phenazine-enzyme physiology for current generation in a bioelectrochemical system.
    Chukwubuikem A; Berger C; Mady A; Rosenbaum MA
    Microb Biotechnol; 2021 Jul; 14(4):1613-1626. PubMed ID: 34000093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring phenazine electron transfer interaction with elements of the respiratory pathways of Pseudomonas putida and Pseudomonas aeruginosa.
    Franco A; Chukwubuikem A; Meiners C; Rosenbaum MA
    Bioelectrochemistry; 2024 Jun; 157():108636. PubMed ID: 38181591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyocyanin and 1-Hydroxyphenazine Promote Anaerobic Killing of Pseudomonas aeruginosa via Single-Electron Transfer with Ferrous Iron.
    Kang J; Cho YH; Lee Y
    Microbiol Spectr; 2022 Dec; 10(6):e0231222. PubMed ID: 36321913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NADH dehydrogenases are the predominant phenazine reductases in the electron transport chain of Pseudomonas aeruginosa.
    Ciemniecki JA; Newman DK
    Mol Microbiol; 2023 May; 119(5):560-573. PubMed ID: 36840394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Pyruvate and α-Ketoglutarate Dehydrogenase Complexes of
    Glasser NR; Wang BX; Hoy JA; Newman DK
    J Biol Chem; 2017 Mar; 292(13):5593-5607. PubMed ID: 28174304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interdependency of Respiratory Metabolism and Phenazine-Associated Physiology in Pseudomonas aeruginosa PA14.
    Jo J; Price-Whelan A; Cornell WC; Dietrich LEP
    J Bacteriol; 2020 Jan; 202(4):. PubMed ID: 31767778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-Time Electrochemical Detection of Pseudomonas aeruginosa Phenazine Metabolites Using Transparent Carbon Ultramicroelectrode Arrays.
    Simoska O; Sans M; Fitzpatrick MD; Crittenden CM; Eberlin LS; Shear JB; Stevenson KJ
    ACS Sens; 2019 Jan; 4(1):170-179. PubMed ID: 30525472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boosting Heterologous Phenazine Production in
    Askitosari TD; Boto ST; Blank LM; Rosenbaum MA
    Front Microbiol; 2019; 10():1990. PubMed ID: 31555229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1.
    Mavrodi DV; Bonsall RF; Delaney SM; Soule MJ; Phillips G; Thomashow LS
    J Bacteriol; 2001 Nov; 183(21):6454-65. PubMed ID: 11591691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenazine content in the cystic fibrosis respiratory tract negatively correlates with lung function and microbial complexity.
    Hunter RC; Klepac-Ceraj V; Lorenzi MM; Grotzinger H; Martin TR; Newman DK
    Am J Respir Cell Mol Biol; 2012 Dec; 47(6):738-45. PubMed ID: 22865623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening of natural phenazine producers for electroactivity in bioelectrochemical systems.
    Franco A; Elbahnasy M; Rosenbaum MA
    Microb Biotechnol; 2023 Mar; 16(3):579-594. PubMed ID: 36571174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyocyanin-dependent electrochemical inhibition of
    Jiménez Otero F; Newman DK; Tender LM
    mBio; 2023 Aug; 14(4):e0070223. PubMed ID: 37314185
    [No Abstract]   [Full Text] [Related]  

  • 13. Extracellular DNA Promotes Efficient Extracellular Electron Transfer by Pyocyanin in Pseudomonas aeruginosa Biofilms.
    Saunders SH; Tse ECM; Yates MD; Otero FJ; Trammell SA; Stemp EDA; Barton JK; Tender LM; Newman DK
    Cell; 2020 Aug; 182(4):919-932.e19. PubMed ID: 32763156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Positive regulation in expression of the phenazine-producing operon phz2 mediated by pip in Pseudomonas aeruginosa PAO1].
    Zhang Y; Cui Q; Zhao Z; Ming Y; Chi X; Feng Z; Cheng S; Xie W; Ge Y
    Wei Sheng Wu Xue Bao; 2013 Feb; 53(2):127-35. PubMed ID: 23627105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling the Production of
    Schmitz S; Rosenbaum MA
    ACS Chem Biol; 2020 Dec; 15(12):3244-3252. PubMed ID: 33258592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial phenazine production enhances electron transfer in biofuel cells.
    Rabaey K; Boon N; Höfte M; Verstraete W
    Environ Sci Technol; 2005 May; 39(9):3401-8. PubMed ID: 15926596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strain- and Substrate-Dependent Redox Mediator and Electricity Production by Pseudomonas aeruginosa.
    Bosire EM; Blank LM; Rosenbaum MA
    Appl Environ Microbiol; 2016 Aug; 82(16):5026-38. PubMed ID: 27287325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox cycling-based detection of phenazine metabolites secreted from Pseudomonas aeruginosa in nanopore electrode arrays.
    Do H; Kwon SR; Baek S; Madukoma CS; Smiley MK; Dietrich LE; Shrout JD; Bohn PW
    Analyst; 2021 Feb; 146(4):1346-1354. PubMed ID: 33393560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time monitoring of phenazines excretion in Pseudomonas aeruginosa microbial fuel cell anode using cavity microelectrodes.
    Qiao Y; Qiao YJ; Zou L; Ma CX; Liu JH
    Bioresour Technol; 2015 Dec; 198():1-6. PubMed ID: 26360598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential Regulation of the Phenazine Biosynthetic Operons by Quorum Sensing in
    Higgins S; Heeb S; Rampioni G; Fletcher MP; Williams P; Cámara M
    Front Cell Infect Microbiol; 2018; 8():252. PubMed ID: 30083519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.