These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 34000427)

  • 41. Applications of diagonal chromatography for proteome-wide characterization of protein modifications and activity-based analyses.
    Gevaert K; Impens F; Van Damme P; Ghesquière B; Hanoulle X; Vandekerckhove J
    FEBS J; 2007 Dec; 274(24):6277-89. PubMed ID: 18021238
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Protein-protein interaction networks: from interactions to networks.
    Cho S; Park SG; Lee DH; Park BC
    J Biochem Mol Biol; 2004 Jan; 37(1):45-52. PubMed ID: 14761302
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High density peptide microarrays for proteome-wide fingerprinting of kinase activities in cell lysates.
    Thiele A; Weiwad M; Zerweck J; Fischer G; Schutkowski M
    Methods Mol Biol; 2010; 669():173-81. PubMed ID: 20857366
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Influence of various endogenous and artefact modifications on large-scale proteomics analysis.
    Bienvenut WV; Sumpton D; Lilla S; Martinez A; Meinnel T; Giglione C
    Rapid Commun Mass Spectrom; 2013 Feb; 27(3):443-50. PubMed ID: 23280976
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Systems Biochemistry Approaches to Defining Mitochondrial Protein Function.
    Sung AY; Floyd BJ; Pagliarini DJ
    Cell Metab; 2020 Apr; 31(4):669-678. PubMed ID: 32268114
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Adding biological meaning to human protein-protein interactions identified by yeast two-hybrid screenings: A guide through bioinformatics tools.
    Felgueiras J; Silva JV; Fardilha M
    J Proteomics; 2018 Jan; 171():127-140. PubMed ID: 28526529
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Exploring Proteomic Drug Targets, Therapeutic Strategies and Protein - Protein Interactions in Cancer: Mechanistic View.
    Dar KB; Bhat AH; Amin S; Anjum S; Reshi BA; Zargar MA; Masood A; Ganie SA
    Curr Cancer Drug Targets; 2019; 19(6):430-448. PubMed ID: 30073927
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Cartographers toolbox: building bigger and better human protein interaction networks.
    Sanderson CM
    Brief Funct Genomic Proteomic; 2009 Jan; 8(1):1-11. PubMed ID: 19282470
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Proteomics: posttranslational modifications, immune responses and current analytical tools.
    Meri S; Baumann M
    Biomol Eng; 2001 Nov; 18(5):213-20. PubMed ID: 11911088
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Uncovering Phosphorylation-Based Specificities through Functional Interaction Networks.
    Wagih O; Sugiyama N; Ishihama Y; Beltrao P
    Mol Cell Proteomics; 2016 Jan; 15(1):236-45. PubMed ID: 26572964
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Analyzing protein-protein interactions in the post-interactomic era. Are we ready for the endgame?
    Johnsson N
    Biochem Biophys Res Commun; 2014 Mar; 445(4):739-45. PubMed ID: 24548408
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Protein-Peptide Interaction Design: PepCrawler and PinaColada.
    Zaidman D; Wolfson HJ
    Methods Mol Biol; 2017; 1561():279-290. PubMed ID: 28236244
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reading protein modifications with interaction domains.
    Seet BT; Dikic I; Zhou MM; Pawson T
    Nat Rev Mol Cell Biol; 2006 Jul; 7(7):473-83. PubMed ID: 16829979
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Impacts of protein-protein interaction domains on organism and network complexity.
    Xia K; Fu Z; Hou L; Han JD
    Genome Res; 2008 Sep; 18(9):1500-8. PubMed ID: 18687879
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Validation of histone-binding partners by peptide pull-downs and isothermal titration calorimetry.
    Malecek K; Ruthenburg A
    Methods Enzymol; 2012; 512():187-220. PubMed ID: 22910208
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Global Proteome Analyses of Lysine Acetylation and Succinylation Reveal the Widespread Involvement of both Modification in Metabolism in the Embryo of Germinating Rice Seed.
    He D; Wang Q; Li M; Damaris RN; Yi X; Cheng Z; Yang P
    J Proteome Res; 2016 Mar; 15(3):879-90. PubMed ID: 26767346
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Describing biological protein interactions in terms of protein states and state transitions: the LiveDIP database.
    Duan XJ; Xenarios I; Eisenberg D
    Mol Cell Proteomics; 2002 Feb; 1(2):104-16. PubMed ID: 12096128
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Human proteins with target sites of multiple post-translational modification types are more prone to be involved in disease.
    Huang Q; Chang J; Cheung MK; Nong W; Li L; Lee MT; Kwan HS
    J Proteome Res; 2014 Jun; 13(6):2735-48. PubMed ID: 24754740
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Genome-scale identification and characterization of moonlighting proteins.
    Khan I; Chen Y; Dong T; Hong X; Takeuchi R; Mori H; Kihara D
    Biol Direct; 2014 Dec; 9():30. PubMed ID: 25497125
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Computational Resources for Predicting Protein-Protein Interactions.
    Tanwar H; George Priya Doss C
    Adv Protein Chem Struct Biol; 2018; 110():251-275. PubMed ID: 29412998
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.