These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 34000427)

  • 61. Describing biological protein interactions in terms of protein states and state transitions: the LiveDIP database.
    Duan XJ; Xenarios I; Eisenberg D
    Mol Cell Proteomics; 2002 Feb; 1(2):104-16. PubMed ID: 12096128
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Human proteins with target sites of multiple post-translational modification types are more prone to be involved in disease.
    Huang Q; Chang J; Cheung MK; Nong W; Li L; Lee MT; Kwan HS
    J Proteome Res; 2014 Jun; 13(6):2735-48. PubMed ID: 24754740
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Computational Resources for Predicting Protein-Protein Interactions.
    Tanwar H; George Priya Doss C
    Adv Protein Chem Struct Biol; 2018; 110():251-275. PubMed ID: 29412998
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Chemical biology approaches to probe the proteome.
    Ovaa H; van Leeuwen F
    Chembiochem; 2008 Dec; 9(18):2913-9. PubMed ID: 18972466
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Identifying Loop-Mediated Protein-Protein Interactions Using LoopFinder.
    Siegert TR; Bird M; Kritzer JA
    Methods Mol Biol; 2017; 1561():255-277. PubMed ID: 28236243
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Proximity labeling of protein complexes and cell-type-specific organellar proteomes in
    Mair A; Xu SL; Branon TC; Ting AY; Bergmann DC
    Elife; 2019 Sep; 8():. PubMed ID: 31535972
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Protein Termini and Their Modifications Revealed by Positional Proteomics.
    Marino G; Eckhard U; Overall CM
    ACS Chem Biol; 2015 Aug; 10(8):1754-64. PubMed ID: 26042555
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Profiling of Protein N-Termini and Their Modifications in Complex Samples.
    Demir F; Niedermaier S; Kizhakkedathu JN; Huesgen PF
    Methods Mol Biol; 2017; 1574():35-50. PubMed ID: 28315242
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Defining the membrane proteome of NK cells.
    Ghosh D; Lippert D; Krokhin O; Cortens JP; Wilkins JA
    J Mass Spectrom; 2010 Jan; 45(1):1-25. PubMed ID: 19946888
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Deep phosphoproteome analysis of Schistosoma mansoni leads development of a kinomic array that highlights sex-biased differences in adult worm protein phosphorylation.
    Hirst NL; Nebel JC; Lawton SP; Walker AJ
    PLoS Negl Trop Dis; 2020 Mar; 14(3):e0008115. PubMed ID: 32203512
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Chemical biology approaches for studying posttranslational modifications.
    Yang A; Cho K; Park HS
    RNA Biol; 2018; 15(4-5):427-440. PubMed ID: 28901832
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Spatial proteomics: a powerful discovery tool for cell biology.
    Lundberg E; Borner GHH
    Nat Rev Mol Cell Biol; 2019 May; 20(5):285-302. PubMed ID: 30659282
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Accurately Predicting Glutarylation Sites Using Sequential Bi-Peptide-Based Evolutionary Features.
    Arafat ME; Ahmad MW; Shovan SM; Dehzangi A; Dipta SR; Hasan MAM; Taherzadeh G; Shatabda S; Sharma A
    Genes (Basel); 2020 Aug; 11(9):. PubMed ID: 32878321
    [TBL] [Abstract][Full Text] [Related]  

  • 74. PTMeta: increasing identification rates of modified peptides using modification prescanning and meta-analysis.
    Nahnsen S; Sachsenberg T; Kohlbacher O
    Proteomics; 2013 Mar; 13(6):1042-51. PubMed ID: 23335442
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A tri-functional amino acid enables mapping of binding sites for posttranslational-modification-mediated protein-protein interactions.
    Lin J; Bao X; Li XD
    Mol Cell; 2021 Jun; 81(12):2669-2681.e9. PubMed ID: 33894155
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Revealing the functional roles of tyrosine sulfation using synthetic sulfopeptides and sulfoproteins.
    Maxwell JWC; Payne RJ
    Curr Opin Chem Biol; 2020 Oct; 58():72-85. PubMed ID: 32777686
    [TBL] [Abstract][Full Text] [Related]  

  • 77. C-terminal motif prediction in eukaryotic proteomes using comparative genomics and statistical over-representation across protein families.
    Austin RS; Provart NJ; Cutler SR
    BMC Genomics; 2007 Jun; 8():191. PubMed ID: 17594486
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Global proteomic analyses define an environmentally contingent Hsp90 interactome and reveal chaperone-dependent regulation of stress granule proteins and the R2TP complex in a fungal pathogen.
    O'Meara TR; O'Meara MJ; Polvi EJ; Pourhaghighi MR; Liston SD; Lin ZY; Veri AO; Emili A; Gingras AC; Cowen LE
    PLoS Biol; 2019 Jul; 17(7):e3000358. PubMed ID: 31283755
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Proteome informatics research group (iPRG)_2012: a study on detecting modified peptides in a complex mixture.
    Chalkley RJ; Bandeira N; Chambers MC; Clauser KR; Cottrell JS; Deutsch EW; Kapp EA; Lam HH; McDonald WH; Neubert TA; Sun RX
    Mol Cell Proteomics; 2014 Jan; 13(1):360-71. PubMed ID: 24187338
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Top-Down Proteomics Applied to Human Cerebrospinal Fluid.
    Gay M; Sánchez-Jiménez E; Villarreal L; Vilanova M; Huguet R; Arauz-Garofalo G; Díaz-Lobo M; López-Ferrer D; Vilaseca M
    Methods Mol Biol; 2019; 2044():193-219. PubMed ID: 31432414
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.