These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 34000474)
21. Peptide induced demixing in PG/PE lipid mixtures: a mechanism for the specificity of antimicrobial peptides towards bacterial membranes? Arouri A; Dathe M; Blume A Biochim Biophys Acta; 2009 Mar; 1788(3):650-9. PubMed ID: 19118516 [TBL] [Abstract][Full Text] [Related]
22. Linking lipid architecture to bilayer structure and mechanics using self-consistent field modelling. Pera H; Kleijn JM; Leermakers FA J Chem Phys; 2014 Feb; 140(6):065102. PubMed ID: 24527938 [TBL] [Abstract][Full Text] [Related]
23. Interaction of a peptide model of a hydrophobic transmembrane alpha-helical segment of a membrane protein with phosphatidylethanolamine bilayers: differential scanning calorimetric and Fourier transform infrared spectroscopic studies. Zhang YP; Lewis RN; Hodges RS; McElhaney RN Biophys J; 1995 Mar; 68(3):847-57. PubMed ID: 7756552 [TBL] [Abstract][Full Text] [Related]
24. Elementary Processes and Mechanisms of Interactions of Antimicrobial Peptides with Membranes-Single Giant Unilamellar Vesicle Studies. Hasan M; Yamazaki M Adv Exp Med Biol; 2019; 1117():17-32. PubMed ID: 30980351 [TBL] [Abstract][Full Text] [Related]
25. Charge-based interactions of antimicrobial peptides and general drugs with lipid bilayers. Ashrafuzzaman M; Tseng CY; Tuszynski JA J Mol Graph Model; 2020 Mar; 95():107502. PubMed ID: 31805474 [TBL] [Abstract][Full Text] [Related]
27. Beyond electrostatics: Antimicrobial peptide selectivity and the influence of cholesterol-mediated fluidity and lipid chain length on protegrin-1 activity. Henderson JM; Iyengar NS; Lam KLH; Maldonado E; Suwatthee T; Roy I; Waring AJ; Lee KYC Biochim Biophys Acta Biomembr; 2019 Oct; 1861(10):182977. PubMed ID: 31077677 [TBL] [Abstract][Full Text] [Related]
28. Lipid selectivity in novel antimicrobial peptides: Implication on antimicrobial and hemolytic activity. Maturana P; Martinez M; Noguera ME; Santos NC; Disalvo EA; Semorile L; Maffia PC; Hollmann A Colloids Surf B Biointerfaces; 2017 May; 153():152-159. PubMed ID: 28236791 [TBL] [Abstract][Full Text] [Related]
29. Structure and dynamics of phospholipids in membranes elucidated by combined use of NMR and vibrational spectroscopies. Akutsu H Biochim Biophys Acta Biomembr; 2020 Sep; 1862(9):183352. PubMed ID: 32407775 [TBL] [Abstract][Full Text] [Related]
30. Overcoming Therapeutic Challenges of Antibiotic Delivery with Cubosome Lipid Nanocarriers. Dyett BP; Sarkar S; Yu H; Strachan J; Drummond CJ; Conn CE ACS Appl Mater Interfaces; 2024 May; 16(19):24191-24205. PubMed ID: 38690584 [TBL] [Abstract][Full Text] [Related]
32. Interaction between Antimicrobial Peptide CM15 and a Model Cell Membrane Affected by CM15 Terminal Amidation and the Membrane Phase State. Ma L; Luo Y; Ma YH; Lu X Langmuir; 2021 Feb; 37(4):1613-1621. PubMed ID: 33464910 [TBL] [Abstract][Full Text] [Related]
33. Role of lipopolysaccharides and lipoteichoic acids on C-Chrysophsin-1 interactions with model Gram-positive and Gram-negative bacterial membranes. Alexander TE; Smith IM; Lipsky ZW; Lozeau LD; Camesano TA Biointerphases; 2020 May; 15(3):031007. PubMed ID: 32456440 [TBL] [Abstract][Full Text] [Related]
34. The importance of membrane defects-lessons from simulations. Bennett WF; Tieleman DP Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900 [TBL] [Abstract][Full Text] [Related]
35. Membrane interaction of antimicrobial peptides using E. coli lipid extract as model bacterial cell membranes and SFG spectroscopy. Soblosky L; Ramamoorthy A; Chen Z Chem Phys Lipids; 2015 Apr; 187():20-33. PubMed ID: 25707312 [TBL] [Abstract][Full Text] [Related]
36. Targeting specific membranes with an azide derivative of the pore-forming peptide ceratotoxin A. Mayer SF; Ducrey J; Dupasquier J; Haeni L; Rothen-Rutishauser B; Yang J; Fennouri A; Mayer M Biochim Biophys Acta Biomembr; 2019 Oct; 1861(10):183023. PubMed ID: 31325418 [TBL] [Abstract][Full Text] [Related]
37. Effect of drastic sequence alteration and D-amino acid incorporation on the membrane binding behavior of lytic peptides. Papo N; Shai Y Biochemistry; 2004 Jun; 43(21):6393-403. PubMed ID: 15157073 [TBL] [Abstract][Full Text] [Related]
38. Peptide models of the helical hydrophobic transmembrane segments of membrane proteins: interactions of acetyl-K2-(LA)12-K2-amide with phosphatidylethanolamine bilayer membranes. Zhang YP; Lewis RN; Hodges RS; McElhaney RN Biochemistry; 2001 Jan; 40(2):474-82. PubMed ID: 11148042 [TBL] [Abstract][Full Text] [Related]