BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 34000929)

  • 1. Halogenation of estrogens catalysed by a fungal chloroperoxidase.
    Undiano E; Roman R; Miranda-Molina A; Ayala M
    Nat Prod Res; 2022 Oct; 36(20):5353-5357. PubMed ID: 34000929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple catalytic roles of chloroperoxidase in the transformation of phenol: Products and pathways.
    Wang K; Huang X; Lin K
    Ecotoxicol Environ Saf; 2019 Sep; 179():96-103. PubMed ID: 31026755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of peroxidative halogenation in mixtures of chloride and bromide.
    Ritter CL; Stead TM; Malejka-Giganti D
    Anal Biochem; 1988 Oct; 174(1):65-72. PubMed ID: 3218747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structures of chloroperoxidase with its bound substrates and complexed with formate, acetate, and nitrate.
    Kühnel K; Blankenfeldt W; Terner J; Schlichting I
    J Biol Chem; 2006 Aug; 281(33):23990-8. PubMed ID: 16790441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The chloride-activated peroxidation of catechol as a mechanistic probe of chloroperoxidase reactions. Competitive activation as evidence for a catalytic chloride binding site on compound I.
    Libby RD; Rotberg NS; Emerson JT; White TC; Yen GM; Friedman SH; Sun NS; Goldowski R
    J Biol Chem; 1989 Sep; 264(26):15284-92. PubMed ID: 2768264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of environmentally relevant polyhalogenated carbazoles from chloroperoxidase-catalyzed halogenation of carbazole.
    Chen Y; Lin K; Chen D; Wang K; Zhou W; Wu Y; Huang X
    Environ Pollut; 2018 Jan; 232():264-273. PubMed ID: 28951041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of intermediates in the catalytic cycle of chloroperoxidase.
    Wagenknecht HA; Woggon WD
    Chem Biol; 1997 May; 4(5):367-72. PubMed ID: 9195874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stereoselectivity of chloroperoxidase-dependent halogenation.
    Ramakrishnan K; Oppenhuizen ME; Saunders S; Fisher J
    Biochemistry; 1983 Jun; 22(13):3271-7. PubMed ID: 6882748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chloroperoxidase halogenation reactions. Chemical versus enzymic halogenating intermediates.
    Libby RD; Thomas JA; Kaiser LW; Hager LP
    J Biol Chem; 1982 May; 257(9):5030-7. PubMed ID: 7068675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biocatalysed halogenation of nucleobase analogues.
    Médici R; Garaycoechea JI; Dettorre LA; Iribarren AM; Lewkowicz ES
    Biotechnol Lett; 2011 Oct; 33(10):1999-2003. PubMed ID: 21660577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Irreversible inactivation of Caldariomyces fumago chloroperoxidase by hydrogen peroxide. A kinetic study in chloride and bromide system.
    Shevelkova AN; Ryabov AD
    Biochem Mol Biol Int; 1996 Jul; 39(4):665-70. PubMed ID: 8843333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic active site analogues of heme-thiolate proteins. Characterization and identification of intermediates of the catalytic cycles of cytochrome P450cam and chloroperoxidase.
    Woggon WD; Wagenknecht HA; Claude C
    J Inorg Biochem; 2001 Feb; 83(4):289-300. PubMed ID: 11293549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocatalytic chlorination of aromatic hydrocarbons by chloroperoxidase of Caldariomyces fumago.
    Vázquez-Duhalt R; Ayala M; Márquez-Rocha FJ
    Phytochemistry; 2001 Nov; 58(6):929-33. PubMed ID: 11684191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heme-thiolate haloperoxidases: versatile biocatalysts with biotechnological and environmental significance.
    Hofrichter M; Ullrich R
    Appl Microbiol Biotechnol; 2006 Jul; 71(3):276-88. PubMed ID: 16628447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chloroperoxidase-mediated chlorination of aromatic groups in fulvic acid.
    Niedan V; Pavasars I; Oberg G
    Chemosphere; 2000 Sep; 41(5):779-85. PubMed ID: 10834381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compound I formation is a partially rate-limiting process in chloroperoxidase-catalyzed bromination reactions.
    Libby RD; Rotberg NS
    J Biol Chem; 1990 Sep; 265(25):14808-11. PubMed ID: 2394699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monoterpenes as novel substrates for oxidation and halo-hydroxylation with chloroperoxidase from Caldariomyces fumago.
    Kaup BA; Piantini U; Wüst M; Schrader J
    Appl Microbiol Biotechnol; 2007 Jan; 73(5):1087-96. PubMed ID: 17028875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectroscopic and QM/MM investigations of Chloroperoxidase catalyzed degradation of orange G.
    Zhang R; He Q; Huang Y; Wang X
    Arch Biochem Biophys; 2016 Apr; 596():1-9. PubMed ID: 26926259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deactivation mechanisms of chloroperoxidase during biotransformations.
    Park JB; Clark DS
    Biotechnol Bioeng; 2006 Apr; 93(6):1190-5. PubMed ID: 16425305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward Environmentally Benign Electrophilic Chlorinations: From Chloroperoxidase to Bioinspired Isoporphyrins.
    Engbers S; Hage R; Klein JEMN
    Inorg Chem; 2022 May; 61(21):8105-8111. PubMed ID: 35574587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.