These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 3400096)

  • 1. Selectivity of methyl mercury effects on cytoskeleton and mitotic progression in cultured cells.
    Sager PR
    Toxicol Appl Pharmacol; 1988 Jul; 94(3):473-86. PubMed ID: 3400096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of methylmercury on the cytoskeleton of murine embryonal carcinoma cells.
    Wasteneys GO; Cadrin M; Reuhl KR; Brown DL
    Cell Biol Toxicol; 1988 Mar; 4(1):41-60. PubMed ID: 3067828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of neurotoxicity related to selective disruption of microtubules and intermediate filaments.
    Sager PR; Matheson DW
    Toxicology; 1988 May; 49(2-3):479-92. PubMed ID: 3376145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of glutathione depletion on methyl mercury-induced microtubule disassembly in cultured embryonal carcinoma cells.
    Graff RD; Philbert MA; Lowndes HE; Reuhl KR
    Toxicol Appl Pharmacol; 1993 May; 120(1):20-8. PubMed ID: 8511779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increasing intracellular concentrations of thymosin beta 4 in PtK2 cells: effects on stress fibers, cytokinesis, and cell spreading.
    Sanger JM; Golla R; Safer D; Choi JK; Yu KR; Sanger JW; Nachmias VT
    Cell Motil Cytoskeleton; 1995; 31(4):307-22. PubMed ID: 7553917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The involvement of microtubular disruption in methylmercury-induced apoptosis in neuronal and nonneuronal cell lines.
    Miura K; Koide N; Himeno S; Nakagawa I; Imura N
    Toxicol Appl Pharmacol; 1999 Nov; 160(3):279-88. PubMed ID: 10544062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytoskeletal effects of acrylamide and 2,5-hexanedione: selective aggregation of vimentin filaments.
    Sager PR
    Toxicol Appl Pharmacol; 1989 Jan; 97(1):141-55. PubMed ID: 2464860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altered sensitivity of posttranslationally modified microtubules to methylmercury in differentiating embryonal carcinoma-derived neurons.
    Graff RD; Falconer MM; Brown DL; Reuhl KR
    Toxicol Appl Pharmacol; 1997 Jun; 144(2):215-24. PubMed ID: 9194405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A scanning electron-microscopic study of the effects of methylmercury on the neuronal cytoskeleton.
    Trombetta LD; Kromidas L
    Toxicol Lett; 1992 May; 60(3):329-41. PubMed ID: 1595092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of methyl mercury on the microtubule system of mouse lymphocytes.
    Brown DL; Reuhl KR; Bormann S; Little JE
    Toxicol Appl Pharmacol; 1988 Jun; 94(1):66-75. PubMed ID: 3376115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of microtubule-associated protein (MAP) expression on methylmercury-induced microtubule disassembly.
    Hunter AM; Brown DL
    Toxicol Appl Pharmacol; 2000 Aug; 166(3):203-13. PubMed ID: 10906284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early acute necrosis, delayed apoptosis and cytoskeletal breakdown in cultured cerebellar granule neurons exposed to methylmercury.
    Castoldi AF; Barni S; Turin I; Gandini C; Manzo L
    J Neurosci Res; 2000 Mar; 59(6):775-87. PubMed ID: 10700015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mercury exposure induces cytoskeleton disruption and loss of renal function through epigenetic modulation of MMP9 expression.
    Khan H; Singh RD; Tiwari R; Gangopadhyay S; Roy SK; Singh D; Srivastava V
    Toxicology; 2017 Jul; 386():28-39. PubMed ID: 28526320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Taxol protects the microtubules of concanavalin A-activated lymphocytes from disassembly by methylmercury, but DNA synthesis is still inhibited.
    Roy C; Prasad KV; Reuhl KR; Little JE; Valentine BK; Brown DL
    Exp Cell Res; 1991 Aug; 195(2):345-52. PubMed ID: 1712730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of methyl mercury on the cell cycle of primary rat CNS cells in vitro.
    Ponce RA; Kavanagh TJ; Mottet NK; Whittaker SG; Faustman EM
    Toxicol Appl Pharmacol; 1994 Jul; 127(1):83-90. PubMed ID: 8048057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coexistence of tubulin, vimentin and F-actin in Leydig cells in vitro detected by double immunofluorescence studies.
    BiliƄska B
    Cytobios; 1993; 74(296):15-21. PubMed ID: 8330484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential responses to methylmercury exposure and recovery in neuroblastoma and glioma cells and fibroblasts.
    Sager PR; Syversen TL
    Exp Neurol; 1984 Aug; 85(2):371-82. PubMed ID: 6086380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The herbicide flamprop-M-methyl has a new antimicrotubule mechanism of action.
    Tresch S; Niggeweg R; Grossmann K
    Pest Manag Sci; 2008 Nov; 64(11):1195-203. PubMed ID: 18551723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of methylmercury with microtubules in cultured cells and in vitro.
    Sager PR; Doherty RA; Olmsted JB
    Exp Cell Res; 1983 Jun; 146(1):127-37. PubMed ID: 6305690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of axonal morphogenesis by nonlethal, submicromolar concentrations of methylmercury.
    Heidemann SR; Lamoureux P; Atchison WD
    Toxicol Appl Pharmacol; 2001 Jul; 174(1):49-59. PubMed ID: 11437648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.