These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 34001006)

  • 1. RcTGA1 and glucosinolate biosynthesis pathway involvement in the defence of rose against the necrotrophic fungus Botrytis cinerea.
    Gao P; Zhang H; Yan H; Wang Q; Yan B; Jian H; Tang K; Qiu X
    BMC Plant Biol; 2021 May; 21(1):223. PubMed ID: 34001006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative RNA-Seq analysis reveals a critical role for brassinosteroids in rose (Rosa hybrida) petal defense against Botrytis cinerea infection.
    Liu X; Cao X; Shi S; Zhao N; Li D; Fang P; Chen X; Qi W; Zhang Z
    BMC Genet; 2018 Aug; 19(1):62. PubMed ID: 30126371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global analysis of the AP2/ERF gene family in rose (Rosa chinensis) genome unveils the role of RcERF099 in Botrytis resistance.
    Li D; Liu X; Shu L; Zhang H; Zhang S; Song Y; Zhang Z
    BMC Plant Biol; 2020 Nov; 20(1):533. PubMed ID: 33228522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptomic and metabolomic changes triggered by Macrosiphum rosivorum in rose (Rosa longicuspis).
    Gao P; Zhang H; Yan H; Zhou N; Yan B; Fan Y; Tang K; Qiu X
    BMC Genomics; 2021 Dec; 22(1):885. PubMed ID: 34886808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of wall-associated kinase/wall-associated kinase-like (WAK/WAKL) family in rose (Rosa chinensis) reveals the role of RcWAK4 in Botrytis resistance.
    Liu X; Wang Z; Tian Y; Zhang S; Li D; Dong W; Zhang C; Zhang Z
    BMC Plant Biol; 2021 Nov; 21(1):526. PubMed ID: 34758750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hexanoic acid protects tomato plants against Botrytis cinerea by priming defence responses and reducing oxidative stress.
    Finiti I; de la O Leyva M; Vicedo B; Gómez-Pastor R; López-Cruz J; García-Agustín P; Real MD; González-Bosch C
    Mol Plant Pathol; 2014 Aug; 15(6):550-62. PubMed ID: 24320938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptome and metabolome reprogramming in Vitis vinifera cv. Trincadeira berries upon infection with Botrytis cinerea.
    Agudelo-Romero P; Erban A; Rego C; Carbonell-Bejerano P; Nascimento T; Sousa L; Martínez-Zapater JM; Kopka J; Fortes AM
    J Exp Bot; 2015 Apr; 66(7):1769-85. PubMed ID: 25675955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RcMYB84 and RcMYB123 mediate jasmonate-induced defense responses against Botrytis cinerea in rose (Rosa chinensis).
    Ren H; Bai M; Sun J; Liu J; Ren M; Dong Y; Wang N; Ning G; Wang C
    Plant J; 2020 Aug; 103(5):1839-1849. PubMed ID: 32524706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular analysis of the early interaction between the grapevine flower and Botrytis cinerea reveals that prompt activation of specific host pathways leads to fungus quiescence.
    Haile ZM; Pilati S; Sonego P; Malacarne G; Vrhovsek U; Engelen K; Tudzynski P; Zottini M; Baraldi E; Moser C
    Plant Cell Environ; 2017 Aug; 40(8):1409-1428. PubMed ID: 28239986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of camalexin, indole glucosinolates, and side chain modification of glucosinolate-derived isothiocyanates in defense of Arabidopsis against Sclerotinia sclerotiorum.
    Stotz HU; Sawada Y; Shimada Y; Hirai MY; Sasaki E; Krischke M; Brown PD; Saito K; Kamiya Y
    Plant J; 2011 Jul; 67(1):81-93. PubMed ID: 21418358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The glutaredoxin ATGRXS13 is required to facilitate Botrytis cinerea infection of Arabidopsis thaliana plants.
    La Camera S; L'haridon F; Astier J; Zander M; Abou-Mansour E; Page G; Thurow C; Wendehenne D; Gatz C; Métraux JP; Lamotte O
    Plant J; 2011 Nov; 68(3):507-19. PubMed ID: 21756272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Mechanism of miR160d in Regulating Kiwifruit Resistance to
    Li Z; Yang S; Ma Y; Sui Y; Xing H; Zhang W; Liao Q; Jiang Y
    J Agric Food Chem; 2023 Jul; 71(27):10304-10313. PubMed ID: 37381782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linking phytochrome to plant immunity: low red : far-red ratios increase Arabidopsis susceptibility to Botrytis cinerea by reducing the biosynthesis of indolic glucosinolates and camalexin.
    Cargnel MD; Demkura PV; Ballaré CL
    New Phytol; 2014 Oct; 204(2):342-54. PubMed ID: 25236170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptome of the floral transition in Rosa chinensis 'Old Blush'.
    Guo X; Yu C; Luo L; Wan H; Zhen N; Xu T; Tan J; Pan H; Zhang Q
    BMC Genomics; 2017 Feb; 18(1):199. PubMed ID: 28228130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide characterization of the rose (Rosa chinensis) WRKY family and role of RcWRKY41 in gray mold resistance.
    Liu X; Li D; Zhang S; Xu Y; Zhang Z
    BMC Plant Biol; 2019 Nov; 19(1):522. PubMed ID: 31775626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant signalling components EDS1 and SGT1 enhance disease caused by the necrotrophic pathogen Botrytis cinerea.
    El Oirdi M; Bouarab K
    New Phytol; 2007; 175(1):131-139. PubMed ID: 17547673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptomic profiling of Solanum peruvianum LA3858 revealed a Mi-3-mediated hypersensitive response to Meloidogyne incognita.
    Du C; Jiang J; Zhang H; Zhao T; Yang H; Zhang D; Zhao Z; Xu X; Li J
    BMC Genomics; 2020 Mar; 21(1):250. PubMed ID: 32293256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overexpression of Three Glucosinolate Biosynthesis Genes in Brassica napus Identifies Enhanced Resistance to Sclerotinia sclerotiorum and Botrytis cinerea.
    Zhang Y; Huai D; Yang Q; Cheng Y; Ma M; Kliebenstein DJ; Zhou Y
    PLoS One; 2015; 10(10):e0140491. PubMed ID: 26465156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcription factors RhbZIP17 and RhWRKY30 enhance resistance to Botrytis cinerea by increasing lignin content in rose petals.
    Li D; Li X; Wang Z; Wang H; Gao J; Liu X; Zhang Z
    J Exp Bot; 2024 Feb; 75(5):1633-1646. PubMed ID: 38180121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Arabidopsis disease resistance against Botrytis cinerea induced by sulfur dioxide.
    Xue M; Yi H
    Ecotoxicol Environ Saf; 2018 Jan; 147():523-529. PubMed ID: 28917191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.