BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 34001007)

  • 1. Learning curves for drug response prediction in cancer cell lines.
    Partin A; Brettin T; Evrard YA; Zhu Y; Yoo H; Xia F; Jiang S; Clyde A; Shukla M; Fonstein M; Doroshow JH; Stevens RL
    BMC Bioinformatics; 2021 May; 22(1):252. PubMed ID: 34001007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High frequency accuracy and loss data of random neural networks trained on image datasets.
    Rorabaugh AK; Caíno-Lores S; Johnston T; Taufer M
    Data Brief; 2022 Feb; 40():107780. PubMed ID: 35036484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boosting Tree-Assisted Multitask Deep Learning for Small Scientific Datasets.
    Jiang J; Wang R; Wang M; Gao K; Nguyen DD; Wei GW
    J Chem Inf Model; 2020 Mar; 60(3):1235-1244. PubMed ID: 31977216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emergency department triage prediction of clinical outcomes using machine learning models.
    Raita Y; Goto T; Faridi MK; Brown DFM; Camargo CA; Hasegawa K
    Crit Care; 2019 Feb; 23(1):64. PubMed ID: 30795786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How can machine-learning methods assist in virtual screening for hyperuricemia? A healthcare machine-learning approach.
    Ichikawa D; Saito T; Ujita W; Oyama H
    J Biomed Inform; 2016 Dec; 64():20-24. PubMed ID: 27658886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A machine learning framework for accurately recognizing circular RNAs for clinical decision-supporting.
    Wang Y; Zhang X; Wang T; Xing J; Wu Z; Li W; Wang J
    BMC Med Inform Decis Mak; 2020 Jul; 20(Suppl 3):137. PubMed ID: 32646420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drug Synergy Prediction Using Dynamic Mutation Based Differential Evolution.
    Kaur M; Singh D; Kumar V
    Curr Pharm Des; 2021; 27(8):1103-1111. PubMed ID: 33155903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Data augmentation and multimodal learning for predicting drug response in patient-derived xenografts from gene expressions and histology images.
    Partin A; Brettin T; Zhu Y; Dolezal JM; Kochanny S; Pearson AT; Shukla M; Evrard YA; Doroshow JH; Stevens RL
    Front Med (Lausanne); 2023; 10():1058919. PubMed ID: 36960342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BOW-GBDT: A GBDT Classifier Combining With Artificial Neural Network for Identifying GPCR-Drug Interaction Based on Wordbook Learning From Sequences.
    Qiu W; Lv Z; Hong Y; Jia J; Xiao X
    Front Cell Dev Biol; 2020; 8():623858. PubMed ID: 33598456
    [No Abstract]   [Full Text] [Related]  

  • 11. Boosted neural networks scoring functions for accurate ligand docking and ranking.
    Ashtawy HM; Mahapatra NR
    J Bioinform Comput Biol; 2018 Apr; 16(2):1850004. PubMed ID: 29495922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of multiple modalities for drug response prediction with learning curves using neural networks and XGBoost.
    Branson N; Cutillas PR; Bessant C
    Bioinform Adv; 2024; 4(1):vbad190. PubMed ID: 38282976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine Learning-Based Prediction of Clinical Outcomes for Children During Emergency Department Triage.
    Goto T; Camargo CA; Faridi MK; Freishtat RJ; Hasegawa K
    JAMA Netw Open; 2019 Jan; 2(1):e186937. PubMed ID: 30646206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beyond multidrug resistance: Leveraging rare variants with machine and statistical learning models in Mycobacterium tuberculosis resistance prediction.
    Chen ML; Doddi A; Royer J; Freschi L; Schito M; Ezewudo M; Kohane IS; Beam A; Farhat M
    EBioMedicine; 2019 May; 43():356-369. PubMed ID: 31047860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comprehensive benchmarking of machine learning algorithms and dimensionality reduction methods for drug sensitivity prediction.
    Eckhart L; Lenhof K; Rolli LM; Lenhof HP
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38797968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved robustness of reinforcement learning policies upon conversion to spiking neuronal network platforms applied to Atari Breakout game.
    Patel D; Hazan H; Saunders DJ; Siegelmann HT; Kozma R
    Neural Netw; 2019 Dec; 120():108-115. PubMed ID: 31500931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CREAMMIST: an integrative probabilistic database for cancer drug response prediction.
    Yingtaweesittikul H; Wu J; Mongia A; Peres R; Ko K; Nagarajan N; Suphavilai C
    Nucleic Acids Res; 2023 Jan; 51(D1):D1242-D1248. PubMed ID: 36259664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine Learning Models of Survival Prediction in Trauma Patients.
    Rau CS; Wu SC; Chuang JF; Huang CY; Liu HT; Chien PC; Hsieh CH
    J Clin Med; 2019 Jun; 8(6):. PubMed ID: 31195670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A cross-study analysis of drug response prediction in cancer cell lines.
    Xia F; Allen J; Balaprakash P; Brettin T; Garcia-Cardona C; Clyde A; Cohn J; Doroshow J; Duan X; Dubinkina V; Evrard Y; Fan YJ; Gans J; He S; Lu P; Maslov S; Partin A; Shukla M; Stahlberg E; Wozniak JM; Yoo H; Zaki G; Zhu Y; Stevens R
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34524425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A meta-learning approach to improving radiation response prediction in cancers.
    Zhang Y; Qiu L; Ren Y; Cheng Z; Li L; Yao S; Zhang C; Luo Z; Lu H
    Comput Biol Med; 2022 Nov; 150():106163. PubMed ID: 37070625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.