BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 34001878)

  • 1. Direct contribution of skeletal muscle mesenchymal progenitors to bone repair.
    Julien A; Kanagalingam A; Martínez-Sarrà E; Megret J; Luka M; Ménager M; Relaix F; Colnot C
    Nat Commun; 2021 May; 12(1):2860. PubMed ID: 34001878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systemic mesenchymal stem cell administration enhances bone formation in fracture repair but not load-induced bone formation.
    Rapp AE; Bindl R; Heilmann A; Erbacher A; Müller I; Brenner RE; Ignatius A
    Eur Cell Mater; 2015 Jan; 29():22-34. PubMed ID: 25552426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regenerative effects of transplanted mesenchymal stem cells in fracture healing.
    Granero-Moltó F; Weis JA; Miga MI; Landis B; Myers TJ; O'Rear L; Longobardi L; Jansen ED; Mortlock DP; Spagnoli A
    Stem Cells; 2009 Aug; 27(8):1887-98. PubMed ID: 19544445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Do skeletal muscle MSCs in humans contribute to bone repair? A systematic review.
    Owston H; Giannoudis PV; Jones E
    Injury; 2016 Dec; 47 Suppl 6():S3-S15. PubMed ID: 28040084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of the Hh pathway in periosteum-derived mesenchymal stem cells induces bone formation in vivo: implication for postnatal bone repair.
    Wang Q; Huang C; Zeng F; Xue M; Zhang X
    Am J Pathol; 2010 Dec; 177(6):3100-11. PubMed ID: 20971735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanobiology of skeletal regeneration.
    Carter DR; Beaupré GS; Giori NJ; Helms JA
    Clin Orthop Relat Res; 1998 Oct; (355 Suppl):S41-55. PubMed ID: 9917625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systemic inhibition of canonical Notch signaling results in sustained callus inflammation and alters multiple phases of fracture healing.
    Dishowitz MI; Mutyaba PL; Takacs JD; Barr AM; Engiles JB; Ahn J; Hankenson KD
    PLoS One; 2013; 8(7):e68726. PubMed ID: 23844237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mesenchymal stem cells and bone regeneration: current status.
    Jones E; Yang X
    Injury; 2011 Jun; 42(6):562-8. PubMed ID: 21489533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Skeletal muscle-resident MSCs and bone formation.
    Lemos DR; Eisner C; Hopkins CI; Rossi FMV
    Bone; 2015 Nov; 80():19-23. PubMed ID: 26103092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Periosteal Mesenchymal Progenitor Dysfunction and Extraskeletally-Derived Fibrosis Contribute to Atrophic Fracture Nonunion.
    Wang L; Tower RJ; Chandra A; Yao L; Tong W; Xiong Z; Tang K; Zhang Y; Liu XS; Boerckel JD; Guo X; Ahn J; Qin L
    J Bone Miner Res; 2019 Mar; 34(3):520-532. PubMed ID: 30602062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The healing potential of the periosteum molecular aspects.
    Malizos KN; Papatheodorou LK
    Injury; 2005 Nov; 36 Suppl 3():S13-9. PubMed ID: 16188544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of muscle stem cells during skeletal regeneration.
    Abou-Khalil R; Yang F; Lieu S; Julien A; Perry J; Pereira C; Relaix F; Miclau T; Marcucio R; Colnot C
    Stem Cells; 2015 May; 33(5):1501-11. PubMed ID: 25594525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution of bone marrow-derived cells in the fracture callus during plate fixation in a green fluorescent protein-chimeric mouse model.
    Ueno M; Uchida K; Takaso M; Minehara H; Suto K; Takahira N; Steck R; Schuetz MA; Itoman M
    Exp Anim; 2011; 60(5):455-62. PubMed ID: 22041282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of low-dose, intermittent treatment with recombinant human parathyroid hormone (1-34) on chondrogenesis in a model of experimental fracture healing.
    Nakazawa T; Nakajima A; Shiomi K; Moriya H; Einhorn TA; Yamazaki M
    Bone; 2005 Nov; 37(5):711-9. PubMed ID: 16143574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mesenchymal stem cells expressing insulin-like growth factor-I (MSCIGF) promote fracture healing and restore new bone formation in Irs1 knockout mice: analyses of MSCIGF autocrine and paracrine regenerative effects.
    Granero-Moltó F; Myers TJ; Weis JA; Longobardi L; Li T; Yan Y; Case N; Rubin J; Spagnoli A
    Stem Cells; 2011 Oct; 29(10):1537-48. PubMed ID: 21786367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of mesenchymal stem cells in maintenance and repair of bone.
    Bielby R; Jones E; McGonagle D
    Injury; 2007 Mar; 38 Suppl 1():S26-32. PubMed ID: 17383482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The spatiotemporal role of COX-2 in osteogenic and chondrogenic differentiation of periosteum-derived mesenchymal progenitors in fracture repair.
    Huang C; Xue M; Chen H; Jiao J; Herschman HR; O'Keefe RJ; Zhang X
    PLoS One; 2014; 9(7):e100079. PubMed ID: 24988184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Skeletal Stem/Progenitor Cells in Periosteum and Skeletal Muscle Share a Common Molecular Response to Bone Injury.
    Julien A; Perrin S; Martínez-Sarrà E; Kanagalingam A; Carvalho C; Luka M; Ménager M; Colnot C
    J Bone Miner Res; 2022 Aug; 37(8):1545-1561. PubMed ID: 35652423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fibrous periosteum repairs bone fracture and maintains the healed bone throughout mouse adulthood.
    Liu YL; Tang XT; Shu HS; Zou W; Zhou BO
    Dev Cell; 2024 May; 59(9):1192-1209.e6. PubMed ID: 38554700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of bone regeneration and turnover modulators in control of fracture.
    Rozen N; Lewinson D; Bick T; Meretyk S; Soudry M
    Crit Rev Eukaryot Gene Expr; 2007; 17(3):197-213. PubMed ID: 17725489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.