These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 34001985)

  • 1. Dynamic mode decomposition of inertial particle caustics in Taylor-Green flow.
    Samant O; Alageshan JK; Sharma S; Kuley A
    Sci Rep; 2021 May; 11(1):10456. PubMed ID: 34001985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scaling properties of particle density fields formed in simulated turbulent flows.
    Hogan RC; Cuzzi JN; Dobrovolskis AR
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Aug; 60(2 Pt B):1674-80. PubMed ID: 11969949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Statistical model for collisions and recollisions of inertial particles in mixing flows.
    Gustavsson K; Mehlig B
    Eur Phys J E Soft Matter; 2016 May; 39(5):55. PubMed ID: 27225619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rate of formation of caustics in heavy particles advected by turbulence.
    Bhatnagar A; Pandey V; Perlekar P; Mitra D
    Philos Trans A Math Phys Eng Sci; 2022 Mar; 380(2219):20210086. PubMed ID: 35094553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deconvolution of reacting-flow dynamics using proper orthogonal and dynamic mode decompositions.
    Roy S; Hua JC; Barnhill W; Gunaratne GH; Gord JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):013001. PubMed ID: 25679702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lagrangian measurements of inertial particle accelerations in grid generated wind tunnel turbulence.
    Ayyalasomayajula S; Gylfason A; Collins LR; Bodenschatz E; Warhaft Z
    Phys Rev Lett; 2006 Oct; 97(14):144507. PubMed ID: 17155261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relative velocity distribution of inertial particles in turbulence: A numerical study.
    Perrin VE; Jonker HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):043022. PubMed ID: 26565347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of Dynamic Mode Decomposition to Study Temporal Flow Behavior in a Saccular Aneurysm.
    Yu P; Durgesh V
    J Biomech Eng; 2022 May; 144(5):. PubMed ID: 34766181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of particle clustering in Gaussian and non-Gaussian synthetic turbulence.
    Nilsen C; Andersson HI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):043005. PubMed ID: 25375592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heavy inertial particles in turbulent flows gain energy slowly but lose it rapidly.
    Bhatnagar A; Gupta A; Mitra D; Pandit R
    Phys Rev E; 2018 Mar; 97(3-1):033102. PubMed ID: 29776121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Taylor-Couette flow of hard-sphere suspensions: overview of current understanding.
    Baroudi L; Majji MV; Peluso S; Morris JF
    Philos Trans A Math Phys Eng Sci; 2023 Mar; 381(2243):20220125. PubMed ID: 36709780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic Mode Decomposition of Fontan Hemodynamics in an Idealized Total Cavopulmonary Connection.
    Delorme YT; Kerlo AE; Anupindi K; Rodefeld MD; Frankel SH
    Fluid Dyn Res; 2014 Aug; 46(4):041425. PubMed ID: 25177079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How long do particles spend in vortical regions in turbulent flows?
    Bhatnagar A; Gupta A; Mitra D; Pandit R; Perlekar P
    Phys Rev E; 2016 Nov; 94(5-1):053119. PubMed ID: 27967067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lagrangian coherent structures and inertial particle dynamics.
    Sudharsan M; Brunton SL; Riley JJ
    Phys Rev E; 2016 Mar; 93(3):033108. PubMed ID: 27078448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active Ornstein-Uhlenbeck model for self-propelled particles with inertia.
    Nguyen GHP; Wittmann R; Löwen H
    J Phys Condens Matter; 2021 Nov; 34(3):. PubMed ID: 34598179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic Mode Decomposition for Large-Scale Coherent Structure Extraction in Shear Flows.
    Nguyen DB; Wu P; Monico RO; Chen G
    IEEE Trans Vis Comput Graph; 2023 Feb; 29(2):1531-1544. PubMed ID: 34727033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of Hydrodynamic Mechanism on Particles Focusing in Micro-Channel Flows.
    Wang Q; Yuan D; Li W
    Micromachines (Basel); 2017 Jun; 8(7):. PubMed ID: 30400388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The dynamics of biofouled particles in vortical flows.
    Kreczak H; Baggaley AW; Willmott AJ
    Mar Pollut Bull; 2023 Apr; 189():114729. PubMed ID: 36848785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport of condensing droplets in Taylor-Green vortex flow in the presence of thermal noise.
    Nath AVS; Roy A; Govindarajan R; Ravichandran S
    Phys Rev E; 2022 Mar; 105(3-2):035101. PubMed ID: 35428137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution of velocity gradients and rate of caustic formation in turbulent aerosols at finite Kubo numbers.
    Gustavsson K; Mehlig B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):023016. PubMed ID: 23496619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.