BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 34002162)

  • 1. Exploring CNN potential in discriminating benign and malignant calcifications in conventional and dual-energy FFDM: simulations and experimental observations.
    Makeev A; Rodal G; Ghammraoui B; Badal A; Glick SJ
    J Med Imaging (Bellingham); 2021 May; 8(3):033501. PubMed ID: 34002162
    [No Abstract]   [Full Text] [Related]  

  • 2. Classification of breast microcalcifications with GaAs photon-counting spectral mammography using an inverse problem approach.
    Ghammraoui B; Bader S; Thuering T; Glick SJ
    Biomed Phys Eng Express; 2023 Mar; 9(3):. PubMed ID: 36716475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using convolutional neural networks to discriminate between cysts and masses in Monte Carlo-simulated dual-energy mammography.
    Makeev A; Toner B; Qian M; Badal A; Glick SJ
    Med Phys; 2021 Aug; 48(8):4648-4655. PubMed ID: 34050965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating the feasibility of classifying breast microcalcifications using photon-counting spectral mammography: A simulation study.
    Ghammraoui B; Glick SJ
    Med Phys; 2017 Jun; 44(6):2304-2311. PubMed ID: 28332199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microcalcification detectability in breast CT images using CNN observers.
    Lyu SH; Abbey CK; Hernandez AM; Boone JM
    Med Phys; 2024 Feb; 51(2):933-945. PubMed ID: 38154070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classification of breast microcalcifications using dual-energy mammography.
    Ghammraoui B; Makeev A; Zidan A; Alayoubi A; Glick SJ
    J Med Imaging (Bellingham); 2019 Jan; 6(1):013502. PubMed ID: 30891465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Task-based assessment of digital mammography microcalcification detection with deep learning denoising algorithmss using
    Makeev A; Glick SJ
    J Med Imaging (Bellingham); 2023 Sep; 10(5):053502. PubMed ID: 37808969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Convolutional neural network -based phantom image scoring for mammography quality control.
    Sundell VM; Mäkelä T; Vitikainen AM; Kaasalainen T
    BMC Med Imaging; 2022 Dec; 22(1):216. PubMed ID: 36476319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative study in patients with microcalcifications: full-field digital mammography vs screen-film mammography.
    Fischer U; Baum F; Obenauer S; Luftner-Nagel S; von Heyden D; Vosshenrich R; Grabbe E
    Eur Radiol; 2002 Nov; 12(11):2679-83. PubMed ID: 12386757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of 2D Synthetic Mammography Versus Digital Mammography in the Detection of Microcalcifications at Screening.
    Dodelzon K; Simon K; Dou E; Levy AD; Michaels AY; Askin G; Katzen JT
    AJR Am J Roentgenol; 2020 Jun; 214(6):1436-1444. PubMed ID: 32255687
    [No Abstract]   [Full Text] [Related]  

  • 11. Comparison of the Detection Rate of Simulated Microcalcifications in Full-Field Digital Mammography, Digital Breast Tomosynthesis, and Synthetically Reconstructed 2-Dimensional Images Performed With 2 Different Digital X-ray Mammography Systems.
    Peters S; Hellmich M; Stork A; Kemper J; Grinstein O; Püsken M; Stahlhut L; Kinner S; Maintz D; Krug KB
    Invest Radiol; 2017 Apr; 52(4):206-215. PubMed ID: 27861206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of full-field digital mammograms versus 2D synthesized mammograms for detection of microcalcifications on screening.
    Wahab RA; Lee SJ; Zhang B; Sobel L; Mahoney MC
    Eur J Radiol; 2018 Oct; 107():14-19. PubMed ID: 30292258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Digital breast tomosynthesis versus digital mammography: integration of image modalities enhances deep learning-based breast mass classification.
    Li X; Qin G; He Q; Sun L; Zeng H; He Z; Chen W; Zhen X; Zhou L
    Eur Radiol; 2020 Feb; 30(2):778-788. PubMed ID: 31691121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microcalcifications Detected at Screening Mammography: Synthetic Mammography and Digital Breast Tomosynthesis versus Digital Mammography.
    Lai YC; Ray KM; Lee AY; Hayward JH; Freimanis RI; Lobach IV; Joe BN
    Radiology; 2018 Dec; 289(3):630-638. PubMed ID: 30277445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of energy weighting using an energy discriminating photon counting detector for breast CT.
    Kalluri KS; Mahd M; Glick SJ
    Med Phys; 2013 Aug; 40(8):081923. PubMed ID: 23927337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer-aided detection of mammographic microcalcifications: pattern recognition with an artificial neural network.
    Chan HP; Lo SC; Sahiner B; Lam KL; Helvie MA
    Med Phys; 1995 Oct; 22(10):1555-67. PubMed ID: 8551980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of exposure equalization on image signal-to-noise ratios in digital mammography: a simulation study with an anthropomorphic breast phantom.
    Liu X; Lai CJ; Whitman GJ; Geiser WR; Shen Y; Yi Y; Shaw CC
    Med Phys; 2011 Dec; 38(12):6489-501. PubMed ID: 22149832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium oxalate crystals in breast biopsies. An overlooked form of microcalcification associated with benign breast disease.
    Radi MJ
    Arch Pathol Lab Med; 1989 Dec; 113(12):1367-9. PubMed ID: 2589947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel physical anthropomorphic breast phantom for 2D and 3D x-ray imaging.
    Ikejimba LC; Graff CG; Rosenthal S; Badal A; Ghammraoui B; Lo JY; Glick SJ
    Med Phys; 2017 Feb; 44(2):407-416. PubMed ID: 27992059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SD-CNN: A shallow-deep CNN for improved breast cancer diagnosis.
    Gao F; Wu T; Li J; Zheng B; Ruan L; Shang D; Patel B
    Comput Med Imaging Graph; 2018 Dec; 70():53-62. PubMed ID: 30292910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.