These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 3400272)
1. Effects of chemical and enzymic probes on microsomal covalent binding of bromobenzene and derivatives. Evidence for quinones as reactive metabolites. Buben JA; Narasimhan N; Hanzlik RP Xenobiotica; 1988 May; 18(5):501-10. PubMed ID: 3400272 [TBL] [Abstract][Full Text] [Related]
2. Microsomal metabolism and covalent binding of [3H/14C]-bromobenzene. Evidence for quinones as reactive metabolites. Narasimhan N; Weller PE; Buben JA; Wiley RA; Hanzlik RP Xenobiotica; 1988 May; 18(5):491-9. PubMed ID: 3400271 [TBL] [Abstract][Full Text] [Related]
3. Multiple reactive metabolites derived from bromobenzene. Lau SS; Monks TJ; Gillette JR Drug Metab Dispos; 1984; 12(3):291-6. PubMed ID: 6145555 [TBL] [Abstract][Full Text] [Related]
4. NADPH-dependent covalent binding of [3H]paroxetine to human liver microsomes and S-9 fractions: identification of an electrophilic quinone metabolite of paroxetine. Zhao SX; Dalvie DK; Kelly JM; Soglia JR; Frederick KS; Smith EB; Obach RS; Kalgutkar AS Chem Res Toxicol; 2007 Nov; 20(11):1649-57. PubMed ID: 17907785 [TBL] [Abstract][Full Text] [Related]
5. Identification of a rat liver microsomal esterase as a target protein for bromobenzene metabolites. Rombach EM; Hanzlik RP Chem Res Toxicol; 1998 Mar; 11(3):178-84. PubMed ID: 9544615 [TBL] [Abstract][Full Text] [Related]
6. In vitro metabolism and covalent binding among ortho-substituted bromobenzenes of varying hepatotoxicity. Weller PE; Narasimhan N; Buben JA; Hanzlik RP Drug Metab Dispos; 1988; 16(2):232-7. PubMed ID: 2898339 [TBL] [Abstract][Full Text] [Related]
7. Effect of fasting on metabolite-mediated hepatotoxicity in the rat. Pessayre D; Dolder A; Artigou JY; Wandscheer JC; Descatoire V; Degott C; Benhamou JP Gastroenterology; 1979 Aug; 77(2):264-71. PubMed ID: 109346 [TBL] [Abstract][Full Text] [Related]
8. NTP technical report on the toxicity and metabolism studies of chloral hydrate (CAS No. 302-17-0). Administered by gavage to F344/N rats and B6C3F1 mice. Beland FA Toxic Rep Ser; 1999 Aug; (59):1-66, A1-E7. PubMed ID: 11803702 [TBL] [Abstract][Full Text] [Related]
9. Comparison of human and mouse liver microsomal metabolism of bromobenzene and chlorobenzene to 2- and 4-halophenols. Kerger BD; Roberts SM; James RC Drug Metab Dispos; 1988; 16(5):672-7. PubMed ID: 2906588 [TBL] [Abstract][Full Text] [Related]
10. Bromobenzene epoxidation leading to binding on macromolecular protein sites. Lau SS; Zannoni VG J Pharmacol Exp Ther; 1981 Nov; 219(2):563-72. PubMed ID: 7288634 [TBL] [Abstract][Full Text] [Related]
11. Phenytoin metabolic activation: role of cytochrome P-450, glutathione, age, and sex in rats and mice. Roy D; Snodgrass WR Res Commun Chem Pathol Pharmacol; 1988 Feb; 59(2):173-90. PubMed ID: 3358010 [TBL] [Abstract][Full Text] [Related]
12. 17 beta-Estradiol metabolism by hamster hepatic microsomes. Implications for the catechol-O-methyl transferase-mediated detoxication of catechol estrogens. Butterworth M; Lau SS; Monks TJ Drug Metab Dispos; 1996 May; 24(5):588-94. PubMed ID: 8723741 [TBL] [Abstract][Full Text] [Related]
13. Imipramine-induced inactivation of a cytochrome P450 2D enzyme in rat liver microsomes: in relation to covalent binding of its reactive intermediate. Masubuchi Y; Igarashi S; Suzuki T; Horie T; Narimatsu S J Pharmacol Exp Ther; 1996 Nov; 279(2):724-31. PubMed ID: 8930177 [TBL] [Abstract][Full Text] [Related]
14. Bromobenzene metabolism in vivo and in vitro. The mechanism of 4-bromocatechol formation. Miller NE; Thomas D; Billings RE Drug Metab Dispos; 1990; 18(3):304-8. PubMed ID: 1974190 [TBL] [Abstract][Full Text] [Related]
16. Hepatic bromobenzene epoxidation and binding: prevention by ascorbyl palmitate. Zannoni VG; Marker EK; Lau SS Drug Nutr Interact; 1982; 1(3):193-204. PubMed ID: 6926828 [TBL] [Abstract][Full Text] [Related]
17. Differences in cytochrome P450-mediated biotransformation of 1,2-dichlorobenzene by rat and man: implications for human risk assessment. Hissink AM; Oudshoorn MJ; Van Ommen B; Haenen GR; Van Bladeren PJ Chem Res Toxicol; 1996 Dec; 9(8):1249-56. PubMed ID: 8951226 [TBL] [Abstract][Full Text] [Related]
18. Oxidation of butylated hydroxytoluene to toxic metabolites. Factors influencing hydroxylation and quinone methide formation by hepatic and pulmonary microsomes. Bolton JL; Thompson JA Drug Metab Dispos; 1991; 19(2):467-72. PubMed ID: 1676656 [TBL] [Abstract][Full Text] [Related]
19. DT-diaphorase and peroxidase influence the covalent binding of the metabolites of phenol, the major metabolite of benzene. Smart RC; Zannoni VG Mol Pharmacol; 1984 Jul; 26(1):105-11. PubMed ID: 6749127 [TBL] [Abstract][Full Text] [Related]
20. Covalent binding of phenytoin to protein and modulation of phenytoin metabolism by thiols in A/J mouse liver microsomes. Roy D; Snodgrass WR J Pharmacol Exp Ther; 1990 Mar; 252(3):895-900. PubMed ID: 2319474 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]