BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 34003014)

  • 1. Machines Like Us and People Like You: Toward Human-Robot Shared Experience.
    Gaggioli A; Chirico A; Di Lernia D; Maggioni MA; Malighetti C; Manzi F; Marchetti A; Massaro D; Rea F; Rossignoli D; Sandini G; Villani D; Wiederhold BK; Riva G; Sciutti A
    Cyberpsychol Behav Soc Netw; 2021 May; 24(5):357-361. PubMed ID: 34003014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Teleoperator-Robot-Human Interaction in Manufacturing: Perspectives from Industry, Robot Manufacturers, and Researchers.
    Kim S; Hernandez I; Nussbaum MA; Lim S
    IISE Trans Occup Ergon Hum Factors; 2024; 12(1-2):28-40. PubMed ID: 38328969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human-Robot Confluence: Toward a Humane Robotics.
    Riva G; Wiederhold BK
    Cyberpsychol Behav Soc Netw; 2021 May; 24(5):291-293. PubMed ID: 34003012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Would a robot trust you? Developmental robotics model of trust and theory of mind.
    Vinanzi S; Patacchiola M; Chella A; Cangelosi A
    Philos Trans R Soc Lond B Biol Sci; 2019 Apr; 374(1771):20180032. PubMed ID: 30852993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Socially intelligent robots: dimensions of human-robot interaction.
    Dautenhahn K
    Philos Trans R Soc Lond B Biol Sci; 2007 Apr; 362(1480):679-704. PubMed ID: 17301026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Social Cognition in the Age of Human-Robot Interaction.
    Henschel A; Hortensius R; Cross ES
    Trends Neurosci; 2020 Jun; 43(6):373-384. PubMed ID: 32362399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploiting upper-limb functional principal components for human-like motion generation of anthropomorphic robots.
    Averta G; Della Santina C; Valenza G; Bicchi A; Bianchi M
    J Neuroeng Rehabil; 2020 May; 17(1):63. PubMed ID: 32404174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological Indicators of Fluency and Engagement during Sequential and Simultaneous Modes of Human-Robot Collaboration.
    Ramadurai S; Gutierrez C; Jeong H; Kim M
    IISE Trans Occup Ergon Hum Factors; 2024; 12(1-2):97-111. PubMed ID: 38047355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions With Robots: The Truths We Reveal About Ourselves.
    Broadbent E
    Annu Rev Psychol; 2017 Jan; 68():627-652. PubMed ID: 27648986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From social brains to social robots: applying neurocognitive insights to human-robot interaction.
    Cross ES; Hortensius R; Wykowska A
    Philos Trans R Soc Lond B Biol Sci; 2019 Apr; 374(1771):20180024. PubMed ID: 30852997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trends of Human-Robot Collaboration in Industry Contexts: Handover, Learning, and Metrics.
    Castro A; Silva F; Santos V
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34203766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HiMoP: A three-component architecture to create more human-acceptable social-assistive robots : Motivational architecture for assistive robots.
    Rodríguez-Lera FJ; Matellán-Olivera V; Conde-González MÁ; Martín-Rico F
    Cogn Process; 2018 May; 19(2):233-244. PubMed ID: 29305760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drawing parallels in human-other interactions: a trans-disciplinary approach to developing human-robot interaction methodologies.
    Collins EC
    Philos Trans R Soc Lond B Biol Sci; 2019 Apr; 374(1771):20180433. PubMed ID: 30853002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-carrying an object by robot in cooperation with humans using visual and force sensing.
    Yu X; Zhang S; Liu Y; Li B; Ma Y; Min G
    Philos Trans A Math Phys Eng Sci; 2021 Oct; 379(2207):20200373. PubMed ID: 34398646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring and Analysis of Youth Sports Physique by Intelligent Medical Robot Based on Cognitive Computing.
    Pei Y; Chen Y
    Comput Intell Neurosci; 2022; 2022():5358059. PubMed ID: 35733566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human Cognition in Interaction With Robots: Taking the Robot's Perspective Into Account.
    Salm-Hoogstraeten SV; Müsseler J
    Hum Factors; 2021 Dec; 63(8):1396-1407. PubMed ID: 32648797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preferred Interaction Styles for Human-Robot Collaboration Vary Over Tasks With Different Action Types.
    Schulz R; Kratzer P; Toussaint M
    Front Neurorobot; 2018; 12():36. PubMed ID: 30022933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intrinsically motivated reinforcement learning for human-robot interaction in the real-world.
    Qureshi AH; Nakamura Y; Yoshikawa Y; Ishiguro H
    Neural Netw; 2018 Nov; 107():23-33. PubMed ID: 29631753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human-agent co-adaptation using error-related potentials.
    Ehrlich SK; Cheng G
    J Neural Eng; 2018 Dec; 15(6):066014. PubMed ID: 30204127
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 15.