These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 34003118)

  • 21. MRI Radiomics Model Predicts Pathologic Complete Response of Rectal Cancer Following Chemoradiotherapy.
    Shin J; Seo N; Baek SE; Son NH; Lim JS; Kim NK; Koom WS; Kim S
    Radiology; 2022 May; 303(2):351-358. PubMed ID: 35133200
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Developing a prediction model based on MRI for pathological complete response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer.
    Wan L; Zhang C; Zhao Q; Meng Y; Zou S; Yang Y; Liu Y; Jiang J; Ye F; Ouyang H; Zhao X; Zhang H
    Abdom Radiol (NY); 2019 Sep; 44(9):2978-2987. PubMed ID: 31327039
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development and validation of an MRI-based radiomic nomogram to distinguish between good and poor responders in patients with locally advanced rectal cancer undergoing neoadjuvant chemoradiotherapy.
    Wang J; Liu X; Hu B; Gao Y; Chen J; Li J
    Abdom Radiol (NY); 2021 May; 46(5):1805-1815. PubMed ID: 33151359
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Does restaging MRI radiomics analysis improve pathological complete response prediction in rectal cancer patients? A prognostic model development.
    Chiloiro G; Cusumano D; de Franco P; Lenkowicz J; Boldrini L; Carano D; Barbaro B; Corvari B; Dinapoli N; Giraffa M; Meldolesi E; Manfredi R; Valentini V; Gambacorta MA
    Radiol Med; 2022 Jan; 127(1):11-20. PubMed ID: 34725772
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MRI-Based Radiomics Predicts Tumor Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer.
    Yi X; Pei Q; Zhang Y; Zhu H; Wang Z; Chen C; Li Q; Long X; Tan F; Zhou Z; Liu W; Li C; Zhou Y; Song X; Li Y; Liao W; Li X; Sun L; Pei H; Zee C; Chen BT
    Front Oncol; 2019; 9():552. PubMed ID: 31293979
    [No Abstract]   [Full Text] [Related]  

  • 26. A Comprehensive Prediction Model Based on MRI Radiomics and Clinical Factors to Predict Tumor Response After Neoadjuvant Chemoradiotherapy in Rectal Cancer.
    Jiang H; Guo W; Yu Z; Lin X; Zhang M; Jiang H; Zhang H; Sun Z; Li J; Yu Y; Zhao S; Hu H
    Acad Radiol; 2023 Sep; 30 Suppl 1():S185-S198. PubMed ID: 37394412
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prediction of locally advanced rectal cancer response to neoadjuvant chemoradiation therapy using volumetric multiparametric MRI-based radiomics.
    El Homsi M; Bane O; Fauveau V; Hectors S; Vietti Violi N; Sylla P; Ko HB; Cuevas J; Carbonell G; Nehlsen A; Vanguri R; Viswanath S; Jambawalikar S; Shaish H; Taouli B
    Abdom Radiol (NY); 2024 Mar; 49(3):791-800. PubMed ID: 38150143
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MRI-based pre-Radiomics and delta-Radiomics models accurately predict the post-treatment response of rectal adenocarcinoma to neoadjuvant chemoradiotherapy.
    Wang L; Wu X; Tian R; Ma H; Jiang Z; Zhao W; Cui G; Li M; Hu Q; Yu X; Xu W
    Front Oncol; 2023; 13():1133008. PubMed ID: 36925913
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [A prediction model of pathological complete response in patients with locally advanced rectal cancer after PD-1 antibody combined with total neoadjuvant chemoradiotherapy based on MRI radiomics].
    Zhang XY; Zhu HT; Li XT; Li YJ; Li ZW; Wang WH; Wu AW; Sun YS; Zhang L
    Zhonghua Wei Chang Wai Ke Za Zhi; 2022 Mar; 25(3):228-234. PubMed ID: 35340172
    [No Abstract]   [Full Text] [Related]  

  • 30. Development of a Joint Prediction Model Based on Both the Radiomics and Clinical Factors for Predicting the Tumor Response to Neoadjuvant Chemoradiotherapy in Patients with Locally Advanced Rectal Cancer.
    Liu Y; Zhang FJ; Zhao XX; Yang Y; Liang CY; Feng LL; Wan XB; Ding Y; Zhang YW
    Cancer Manag Res; 2021; 13():3235-3246. PubMed ID: 33880066
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Endorectal ultrasound radiomics in locally advanced rectal cancer patients: despeckling and radiotherapy response prediction using machine learning.
    Abbaspour S; Abdollahi H; Arabalibeik H; Barahman M; Arefpour AM; Fadavi P; Ay M; Mahdavi SR
    Abdom Radiol (NY); 2022 Nov; 47(11):3645-3659. PubMed ID: 35951085
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Attention mechanism based multi-sequence MRI fusion improves prediction of response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer.
    Zhou X; Yu Y; Feng Y; Ding G; Liu P; Liu L; Ren W; Zhu Y; Cao W
    Radiat Oncol; 2023 Oct; 18(1):175. PubMed ID: 37891611
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preoperative prediction of perineural invasion of rectal cancer based on a magnetic resonance imaging radiomics model: A dual-center study.
    Liu Y; Sun BJ; Zhang C; Li B; Yu XX; Du Y
    World J Gastroenterol; 2024 Apr; 30(16):2233-2248. PubMed ID: 38690027
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CT radiomics identifying non-responders to neoadjuvant chemoradiotherapy among patients with locally advanced rectal cancer.
    Zhang Z; Yi X; Pei Q; Fu Y; Li B; Liu H; Han Z; Chen C; Pang P; Lin H; Gong G; Yin H; Zai H; Chen BT
    Cancer Med; 2023 Feb; 12(3):2463-2473. PubMed ID: 35912919
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Predictive value of combination of MRI tumor regression grade and apparent diffusion coefficient for pathological complete remission after neoadjuvant treatment of locally advanced rectal cancer].
    Xu N; Huang FC; Li WL; Luan X; Jiang YM; He B
    Zhonghua Wei Chang Wai Ke Za Zhi; 2021 Apr; 24(4):359-365. PubMed ID: 33878826
    [No Abstract]   [Full Text] [Related]  

  • 36. Multiparametric MRI-based radiomic model for predicting lymph node metastasis after neoadjuvant chemoradiotherapy in locally advanced rectal cancer.
    Wei Q; Chen L; Hou X; Lin Y; Xie R; Yu X; Zhang H; Wen Z; Wu Y; Liu X; Chen W
    Insights Imaging; 2024 Jun; 15(1):163. PubMed ID: 38922456
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MRI T2-weighted sequences-based texture analysis (TA) as a predictor of response to neoadjuvant chemo-radiotherapy (nCRT) in patients with locally advanced rectal cancer (LARC).
    Crimì F; Capelli G; Spolverato G; Bao QR; Florio A; Milite Rossi S; Cecchin D; Albertoni L; Campi C; Pucciarelli S; Stramare R
    Radiol Med; 2020 Dec; 125(12):1216-1224. PubMed ID: 32410063
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predicting poor response to neoadjuvant chemoradiotherapy for locally advanced rectal cancer: Model constructed using pre-treatment MRI features of structured report template.
    Tang X; Jiang W; Li H; Xie F; Dong A; Liu L; Li L
    Radiother Oncol; 2020 Jul; 148():97-106. PubMed ID: 32339781
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pre-treatment ADC image-based random forest classifier for identifying resistant rectal adenocarcinoma to neoadjuvant chemoradiotherapy.
    Yang C; Jiang ZK; Liu LH; Zeng MS
    Int J Colorectal Dis; 2020 Jan; 35(1):101-107. PubMed ID: 31786652
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Radiomics Signature Based on Support Vector Machines for the Prediction of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer.
    Li C; Chen H; Zhang B; Fang Y; Sun W; Wu D; Su Z; Shen L; Wei Q
    Cancers (Basel); 2023 Oct; 15(21):. PubMed ID: 37958309
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.