BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 34003316)

  • 1. Emerging role of phospholipase C mediated lipid signaling in abiotic stress tolerance and development in plants.
    Sagar S; Singh A
    Plant Cell Rep; 2021 Nov; 40(11):2123-2133. PubMed ID: 34003316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plant phospholipase C family: Regulation and functional role in lipid signaling.
    Singh A; Bhatnagar N; Pandey A; Pandey GK
    Cell Calcium; 2015 Aug; 58(2):139-46. PubMed ID: 25933832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plant phosphoinositide-dependent phospholipases C: variations around a canonical theme.
    Pokotylo I; Kolesnikov Y; Kravets V; Zachowski A; Ruelland E
    Biochimie; 2014 Jan; 96():144-57. PubMed ID: 23856562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant phospholipases D and C and their diverse functions in stress responses.
    Hong Y; Zhao J; Guo L; Kim SC; Deng X; Wang G; Zhang G; Li M; Wang X
    Prog Lipid Res; 2016 Apr; 62():55-74. PubMed ID: 26783886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive genomic analysis and expression profiling of phospholipase C gene family during abiotic stresses and development in rice.
    Singh A; Kanwar P; Pandey A; Tyagi AK; Sopory SK; Kapoor S; Pandey GK
    PLoS One; 2013; 8(4):e62494. PubMed ID: 23638098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic and expression analysis indicate the involvement of phospholipase C family in abiotic stress signaling in chickpea (Cicer arietinum).
    Sagar S; Biswas DK; Singh A
    Gene; 2020 Aug; 753():144797. PubMed ID: 32454180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome wide characterization of phospholipase A & C families and pattern of lysolipids and diacylglycerol changes under abiotic stresses in Brassica napus L.
    Iqbal S; Ali U; Fadlalla T; Li Q; Liu H; Lu S; Guo L
    Plant Physiol Biochem; 2020 Feb; 147():101-112. PubMed ID: 31855816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Lipid signaling pathways in plants and their roles in response to water constraints].
    Leprince AS; Savouré A
    Biol Aujourdhui; 2010; 204(1):11-9. PubMed ID: 20950571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant phospholipase D: novel structure, regulatory mechanism, and multifaceted functions with biotechnological application.
    Deepika D; Singh A
    Crit Rev Biotechnol; 2022 Feb; 42(1):106-124. PubMed ID: 34167393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pollen tube tip growth depends on plasma membrane polarization mediated by tobacco PLC3 activity and endocytic membrane recycling.
    Helling D; Possart A; Cottier S; Klahre U; Kost B
    Plant Cell; 2006 Dec; 18(12):3519-34. PubMed ID: 17172355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mammalian phospholipase C.
    Kadamur G; Ross EM
    Annu Rev Physiol; 2013; 75():127-54. PubMed ID: 23140367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N-terminal EF-hand-like domain is required for phosphoinositide-specific phospholipase C activity in Arabidopsis thaliana.
    Otterhag L; Sommarin M; Pical C
    FEBS Lett; 2001 May; 497(2-3):165-70. PubMed ID: 11377433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Arabidopsis DREB2 genetic pathway is constitutively repressed by basal phosphoinositide-dependent phospholipase C coupled to diacylglycerol kinase.
    Djafi N; Vergnolle C; Cantrel C; Wietrzyñski W; Delage E; Cochet F; Puyaubert J; Soubigou-Taconnat L; Gey D; Collin S; Balzergue S; Zachowski A; Ruelland E
    Front Plant Sci; 2013; 4():307. PubMed ID: 23964284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and mechanistic comparison of prokaryotic and eukaryotic phosphoinositide-specific phospholipases C.
    Heinz DW; Essen LO; Williams RL
    J Mol Biol; 1998 Jan; 275(4):635-50. PubMed ID: 9466937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PGF2alpha-induced signaling events in glomerular mesangial cells.
    Breshnahan BA; Kelefiotis D; Stratidakis I; Lianos EA
    Proc Soc Exp Biol Med; 1996 Jun; 212(2):165-73. PubMed ID: 8650255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Closely Associated Phospholipase C Regulates Cation Channel Function through Phosphoinositide Hydrolysis.
    Sturgeon RM; Magoski NS
    J Neurosci; 2018 Aug; 38(35):7622-7634. PubMed ID: 30037836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel mechanisms for feedback regulation of phospholipase C-beta activity.
    Litosch I
    IUBMB Life; 2002 Nov; 54(5):253-60. PubMed ID: 12587975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Role of GTP-binding proteins in phospholipid metabolism in human platelets].
    Nagata K; Nozawa Y
    Nihon Rinsho; 1992 Feb; 50(2):223-9. PubMed ID: 1613975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emerging roles of phosphoinositide-specific phospholipases C in the ciliates Tetrahymena and Paramecium.
    Leondaritis G; Galanopoulou D
    Commun Integr Biol; 2011 Sep; 4(5):576-8. PubMed ID: 22046467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Topological organisation of the phosphatidylinositol 4,5-bisphosphate-phospholipase C resynthesis cycle: PITPs bridge the ER-PM gap.
    Cockcroft S; Raghu P
    Biochem J; 2016 Dec; 473(23):4289-4310. PubMed ID: 27888240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.