BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 34003320)

  • 1. Structure, biochemistry, and gene expression patterns of the proline biosynthetic enzyme pyrroline-5-carboxylate reductase (PYCR), an emerging cancer therapy target.
    Bogner AN; Stiers KM; Tanner JJ
    Amino Acids; 2021 Dec; 53(12):1817-1834. PubMed ID: 34003320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PYCR in Kidney Renal Papillary Cell Carcinoma: Expression, Prognosis, Gene Regulation Network, and Regulation Targets.
    Shao Z; Lu L; Cui Y; Deng L; Xu Q; Liang Q; Lu X; Zhang J; Chen J; Situ Y
    Front Biosci (Landmark Ed); 2022 Dec; 27(12):336. PubMed ID: 36624948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resolving the cofactor-binding site in the proline biosynthetic enzyme human pyrroline-5-carboxylate reductase 1.
    Christensen EM; Patel SM; Korasick DA; Campbell AC; Krause KL; Becker DF; Tanner JJ
    J Biol Chem; 2017 Apr; 292(17):7233-7243. PubMed ID: 28258219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Proline Cycle As a Potential Cancer Therapy Target.
    Tanner JJ; Fendt SM; Becker DF
    Biochemistry; 2018 Jun; 57(25):3433-3444. PubMed ID: 29648801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PYCR, a key enzyme in proline metabolism, functions in tumorigenesis.
    Li Y; Bie J; Song C; Liu M; Luo J
    Amino Acids; 2021 Dec; 53(12):1841-1850. PubMed ID: 34273023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression and kinetic characterization of PYCR3.
    Meeks KR; Tanner JJ
    Arch Biochem Biophys; 2023 Jan; 733():109468. PubMed ID: 36414121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human mitochondrial pyrroline-5-carboxylate reductase 1 promotes invasiveness and impacts survival in breast cancers.
    Ding J; Kuo ML; Su L; Xue L; Luh F; Zhang H; Wang J; Lin TG; Zhang K; Chu P; Zheng S; Liu X; Yen Y
    Carcinogenesis; 2017 May; 38(5):519-531. PubMed ID: 28379297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oncogenic human herpesvirus hijacks proline metabolism for tumorigenesis.
    Choi UY; Lee JJ; Park A; Zhu W; Lee HR; Choi YJ; Yoo JS; Yu C; Feng P; Gao SJ; Chen S; Eoh H; Jung JU
    Proc Natl Acad Sci U S A; 2020 Apr; 117(14):8083-8093. PubMed ID: 32213586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isozymes of P5C reductase (PYCR) in human diseases: focus on cancer.
    Hu CA
    Amino Acids; 2021 Dec; 53(12):1835-1840. PubMed ID: 34291342
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Christensen EM; Bogner AN; Vandekeere A; Tam GS; Patel SM; Becker DF; Fendt SM; Tanner JJ
    J Biol Chem; 2020 Dec; 295(52):18316-18327. PubMed ID: 33109600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional Impact of a Cancer-Related Variant in Human Δ
    Daudu OI; Meeks KR; Zhang L; Seravalli J; Tanner JJ; Becker DF
    ACS Omega; 2023 Jan; 8(3):3509-3519. PubMed ID: 36713721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disease variants of human Δ
    Patel SM; Seravalli J; Liang X; Tanner JJ; Becker DF
    Arch Biochem Biophys; 2021 May; 703():108852. PubMed ID: 33771508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of human pyrroline-5-carboxylate reductase in L-thioproline metabolism.
    Patel SM; Seravalli J; Stiers KM; Tanner JJ; Becker DF
    Amino Acids; 2021 Dec; 53(12):1863-1874. PubMed ID: 34792644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional specialization in proline biosynthesis of melanoma.
    De Ingeniis J; Ratnikov B; Richardson AD; Scott DA; Aza-Blanc P; De SK; Kazanov M; Pellecchia M; Ronai Z; Osterman AL; Smith JW
    PLoS One; 2012; 7(9):e45190. PubMed ID: 23024808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic pathway analyses identify proline biosynthesis pathway as a promoter of liver tumorigenesis.
    Ding Z; Ericksen RE; Escande-Beillard N; Lee QY; Loh A; Denil S; Steckel M; Haegebarth A; Wai Ho TS; Chow P; Toh HC; Reversade B; Gruenewald S; Han W
    J Hepatol; 2020 Apr; 72(4):725-735. PubMed ID: 31726117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pyrroline-5-Carboxylate Reductase 1: a novel target for sensitizing multiple myeloma cells to bortezomib by inhibition of PRAS40-mediated protein synthesis.
    Oudaert I; Satilmis H; Vlummens P; De Brouwer W; Maes A; Hose D; De Bruyne E; Ghesquière B; Vanderkerken K; De Veirman K; Menu E
    J Exp Clin Cancer Res; 2022 Feb; 41(1):45. PubMed ID: 35105345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic evidence for a common enzyme catalyzing the second step in the degradation of proline and hydroxyproline.
    Valle D; Goodman SI; Harris SC; Phang JM
    J Clin Invest; 1979 Nov; 64(5):1365-70. PubMed ID: 500817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SIRT3 regulates cancer cell proliferation through deacetylation of PYCR1 in proline metabolism.
    Chen S; Yang X; Yu M; Wang Z; Liu B; Liu M; Liu L; Ren M; Qi H; Zou J; Vucenik I; Zhu WG; Luo J
    Neoplasia; 2019 Jul; 21(7):665-675. PubMed ID: 31108370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oncogenic IDH1 Mutations Promote Enhanced Proline Synthesis through PYCR1 to Support the Maintenance of Mitochondrial Redox Homeostasis.
    Hollinshead KER; Munford H; Eales KL; Bardella C; Li C; Escribano-Gonzalez C; Thakker A; Nonnenmacher Y; Kluckova K; Jeeves M; Murren R; Cuozzo F; Ye D; Laurenti G; Zhu W; Hiller K; Hodson DJ; Hua W; Tomlinson IP; Ludwig C; Mao Y; Tennant DA
    Cell Rep; 2018 Mar; 22(12):3107-3114. PubMed ID: 29562167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subcellular compartmentation in control of converging pathways for proline and arginine metabolism in Saccharomyces cerevisiae.
    Brandriss MC; Magasanik B
    J Bacteriol; 1981 Mar; 145(3):1359-64. PubMed ID: 7009582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.