These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 34003477)

  • 1. Prognosis prediction of extremity and trunk wall soft-tissue sarcomas treated with surgical resection with radiomic analysis based on random survival forest.
    Yang Y; Ma X; Wang Y; Ding X
    Updates Surg; 2022 Feb; 74(1):355-365. PubMed ID: 34003477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrative nomogram of CT imaging, clinical, and hematological features for survival prediction of patients with locally advanced non-small cell lung cancer.
    Wang L; Dong T; Xin B; Xu C; Guo M; Zhang H; Feng D; Wang X; Yu J
    Eur Radiol; 2019 Jun; 29(6):2958-2967. PubMed ID: 30643940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computed tomography-derived radiomic signature of head and neck squamous cell carcinoma (peri)tumoral tissue for the prediction of locoregional recurrence and distant metastasis after concurrent chemo-radiotherapy.
    Keek S; Sanduleanu S; Wesseling F; de Roest R; van den Brekel M; van der Heijden M; Vens C; Giuseppina C; Licitra L; Scheckenbach K; Vergeer M; Leemans CR; Brakenhoff RH; Nauta I; Cavalieri S; Woodruff HC; Poli T; Leijenaar R; Hoebers F; Lambin P
    PLoS One; 2020; 15(5):e0232639. PubMed ID: 32442178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning and radiomic phenotyping of lower grade gliomas: improving survival prediction.
    Choi YS; Ahn SS; Chang JH; Kang SG; Kim EH; Kim SH; Jain R; Lee SK
    Eur Radiol; 2020 Jul; 30(7):3834-3842. PubMed ID: 32162004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The development of a prediction model based on random survival forest for the prognosis of non- Hodgkin lymphoma: A prospective cohort study in China.
    Li X; Yang Z; Li J; Wang G; Sun A; Wang Y; Zhang W; Liu Y; Lei H
    Heliyon; 2024 Jun; 10(12):e32788. PubMed ID: 39022101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Application and Comparison of Machine Learning Models for the Prediction of Breast Cancer Prognosis: Retrospective Cohort Study.
    Xiao J; Mo M; Wang Z; Zhou C; Shen J; Yuan J; He Y; Zheng Y
    JMIR Med Inform; 2022 Feb; 10(2):e33440. PubMed ID: 35179504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting prognosis of resected hepatocellular carcinoma by radiomics analysis with random survival forest.
    Akai H; Yasaka K; Kunimatsu A; Nojima M; Kokudo T; Kokudo N; Hasegawa K; Abe O; Ohtomo K; Kiryu S
    Diagn Interv Imaging; 2018 Oct; 99(10):643-651. PubMed ID: 29910166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CT-based radiomic features predict tumor grading and have prognostic value in patients with soft tissue sarcomas treated with neoadjuvant radiation therapy.
    Peeken JC; Bernhofer M; Spraker MB; Pfeiffer D; Devecka M; Thamer A; Shouman MA; Ott A; Nüsslin F; Mayr NA; Rost B; Nyflot MJ; Combs SE
    Radiother Oncol; 2019 Jun; 135():187-196. PubMed ID: 30961895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application and limitation of radiomics approach to prognostic prediction for lung stereotactic body radiotherapy using breath-hold CT images with random survival forest: A multi-institutional study.
    Kakino R; Nakamura M; Mitsuyoshi T; Shintani T; Kokubo M; Negoro Y; Fushiki M; Ogura M; Itasaka S; Yamauchi C; Otsu S; Sakamoto T; Sakamoto M; Araki N; Hirashima H; Adachi T; Matsuo Y; Mizowaki T
    Med Phys; 2020 Sep; 47(9):4634-4643. PubMed ID: 32645224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Comparison Study of Machine Learning (Random Survival Forest) and Classic Statistic (Cox Proportional Hazards) for Predicting Progression in High-Grade Glioma after Proton and Carbon Ion Radiotherapy.
    Qiu X; Gao J; Yang J; Hu J; Hu W; Kong L; Lu JJ
    Front Oncol; 2020; 10():551420. PubMed ID: 33194609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MRI-based delta-radiomics predicts pathologic complete response in high-grade soft-tissue sarcoma patients treated with neoadjuvant therapy.
    Peeken JC; Asadpour R; Specht K; Chen EY; Klymenko O; Akinkuoroye V; Hippe DS; Spraker MB; Schaub SK; Dapper H; Knebel C; Mayr NA; Gersing AS; Woodruff HC; Lambin P; Nyflot MJ; Combs SE
    Radiother Oncol; 2021 Nov; 164():73-82. PubMed ID: 34506832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving survival prediction of high-grade glioma via machine learning techniques based on MRI radiomic, genetic and clinical risk factors.
    Tan Y; Mu W; Wang XC; Yang GQ; Gillies RJ; Zhang H
    Eur J Radiol; 2019 Nov; 120():108609. PubMed ID: 31606714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A machine learning-based survival prediction model of high grade glioma by integration of clinical and dose-volume histogram parameters.
    Chen H; Li C; Zheng L; Lu W; Li Y; Wei Q
    Cancer Med; 2021 Apr; 10(8):2774-2786. PubMed ID: 33760360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning-based radiomic, clinical and semantic feature analysis for predicting overall survival and MGMT promoter methylation status in patients with glioblastoma.
    Lu Y; Patel M; Natarajan K; Ughratdar I; Sanghera P; Jena R; Watts C; Sawlani V
    Magn Reson Imaging; 2020 Dec; 74():161-170. PubMed ID: 32980505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiomic signature of
    Jiang Y; Yuan Q; Lv W; Xi S; Huang W; Sun Z; Chen H; Zhao L; Liu W; Hu Y; Lu L; Ma J; Li T; Yu J; Wang Q; Li G
    Theranostics; 2018; 8(21):5915-5928. PubMed ID: 30613271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning radiomic nomogram to predict recurrence in soft tissue sarcoma: a multi-institutional study.
    Liu S; Sun W; Yang S; Duan L; Huang C; Xu J; Hou F; Hao D; Yu T; Wang H
    Eur Radiol; 2022 Feb; 32(2):793-805. PubMed ID: 34448928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contrast CT radiomic features add value to prediction of prognosis in adrenal cortical carcinoma.
    Liu J; Lin W; Yan L; Xie J; Dai J; Xu D; Zhao J
    Endocrine; 2024 Mar; 83(3):763-774. PubMed ID: 37968537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Homology-based radiomic features for prediction of the prognosis of lung cancer based on CT-based radiomics.
    Kadoya N; Tanaka S; Kajikawa T; Tanabe S; Abe K; Nakajima Y; Yamamoto T; Takahashi N; Takeda K; Dobashi S; Takeda K; Nakane K; Jingu K
    Med Phys; 2020 Jun; 47(5):2197-2205. PubMed ID: 32096876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Progression-Free Survival Prediction in Small Cell Lung Cancer Based on Radiomics Analysis of Contrast-Enhanced CT.
    Chen N; Li R; Jiang M; Guo Y; Chen J; Sun D; Wang L; Yao X
    Front Med (Lausanne); 2022; 9():833283. PubMed ID: 35280863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a machine learning model to predict early recurrence for hepatocellular carcinoma after curative resection.
    Zeng J; Zeng J; Lin K; Lin H; Wu Q; Guo P; Zhou W; Liu J
    Hepatobiliary Surg Nutr; 2022 Apr; 11(2):176-187. PubMed ID: 35464276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.