BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 34003509)

  • 1. Evaluating the Ready Biodegradability of Biodegradable Plastics.
    Nabeoka R; Suzuki H; Akasaka Y; Ando N; Yoshida T
    Environ Toxicol Chem; 2021 Sep; 40(9):2443-2449. PubMed ID: 34003509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial degradation of aliphatic and aliphatic-aromatic co-polyesters.
    Shah AA; Kato S; Shintani N; Kamini NR; Nakajima-Kambe T
    Appl Microbiol Biotechnol; 2014 Apr; 98(8):3437-47. PubMed ID: 24522729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the mechanism of enhanced anaerobic biodegradation of biodegradable plastics after alkaline pretreatment.
    Jin Y; Sun X; Song C; Cai F; Liu G; Chen C
    Sci Total Environ; 2023 May; 873():162324. PubMed ID: 36813202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of test concentration in the ready biodegradability test for chemical substances: Improvement of OECD test guideline 301C.
    Nabeoka R; Taruki M; Kayashima T; Yoshida T; Kameya T
    Environ Toxicol Chem; 2016 Jan; 35(1):84-90. PubMed ID: 26211908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradability and biodegradation rate of poly(caprolactone)-starch blend and poly(butylene succinate) biodegradable polymer under aerobic and anaerobic environment.
    Cho HS; Moon HS; Kim M; Nam K; Kim JY
    Waste Manag; 2011 Mar; 31(3):475-80. PubMed ID: 21144726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of biodegradation performance of OECD test guideline 301C with that of other ready biodegradability tests.
    Kayashima T; Taruki M; Katagiri K; Nabeoka R; Yoshida T; Tsuji T
    Environ Toxicol Chem; 2014 Feb; 33(2):328-33. PubMed ID: 24173884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new method for the evaluation of biodegradable plastic using coated cellulose paper.
    Lim HA; Raku T; Tokiwa Y
    Macromol Biosci; 2004 Sep; 4(9):875-81. PubMed ID: 15468296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of MicroResp™ for quick and easy detection of plastic degradation by marine bacterial isolates.
    Mitsumori C; Tsuboi S; Shimamura M; Miura T
    Mar Environ Res; 2024 Apr; 196():106430. PubMed ID: 38447329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradation Behavior of Poly(Butylene Adipate-Co-Terephthalate) (PBAT), Poly(Lactic Acid) (PLA), and Their Blend in Freshwater with Sediment.
    Fu Y; Wu G; Bian X; Zeng J; Weng Y
    Molecules; 2020 Aug; 25(17):. PubMed ID: 32872416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradability of novel high T
    Wang Y; Davey CJE; van der Maas K; van Putten RJ; Tietema A; Parsons JR; Gruter GM
    Sci Total Environ; 2022 Apr; 815():152781. PubMed ID: 34990691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active microbial communities during biodegradation of biodegradable plastics by mesophilic and thermophilic anaerobic digestion.
    Cazaudehore G; Monlau F; Gassie C; Lallement A; Guyoneaud R
    J Hazard Mater; 2023 Feb; 443(Pt A):130208. PubMed ID: 36308937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradable Plastic Blends Create New Possibilities for End-of-Life Management of Plastics but They Are Not a Panacea for Plastic Pollution.
    Narancic T; Verstichel S; Reddy Chaganti S; Morales-Gamez L; Kenny ST; De Wilde B; Babu Padamati R; O'Connor KE
    Environ Sci Technol; 2018 Sep; 52(18):10441-10452. PubMed ID: 30156110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ready Biodegradability Ring Testing of 4-Isopropylphenol in Different Laboratories for Critical Evaluation of a Biodegradable Reference Substance.
    Gu W; Zhou L; Wang Z; Lin C; Liu J; Ge H; Shi L
    Integr Environ Assess Manag; 2021 May; 17(3):562-572. PubMed ID: 32970353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing the biodegradability of microparticles disposed down the drain.
    McDonough K; Itrich N; Casteel K; Menzies J; Williams T; Krivos K; Price J
    Chemosphere; 2017 May; 175():452-458. PubMed ID: 28242460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The potential of cold-adapted microorganisms for biodegradation of bioplastics.
    Urbanek AK; Strzelecki MC; Mirończuk AM
    Waste Manag; 2021 Jan; 119():72-81. PubMed ID: 33045489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial degradation of four biodegradable polymers in soil and compost demonstrating polycaprolactone as an ideal compostable plastic.
    Al Hosni AS; Pittman JK; Robson GD
    Waste Manag; 2019 Sep; 97():105-114. PubMed ID: 31447017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superior sequence-controlled poly(L-lactide)-based bioplastic with tunable seawater biodegradation.
    He M; Hsu YI; Uyama H
    J Hazard Mater; 2024 Aug; 474():134819. PubMed ID: 38850940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biotechnological production of (R)-3-hydroxybutyric acid monomer.
    Tokiwa Y; Ugwu CU
    J Biotechnol; 2007 Nov; 132(3):264-72. PubMed ID: 17543411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Marine Sand on the Microbial Degradation of Biodegradable Plastics in Seawater and Biofilm Communities that Formed on Plastic Surfaces.
    Morohoshi T; Taniguchi A; Sugawara A; Suzuki T; Sato S
    Microbes Environ; 2022; 37(4):. PubMed ID: 36244762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of biowastes and biodegradable plastics co-digestion in semi-continuous reactors: Performances and agronomic evaluation.
    Cazaudehore G; Guyoneaud R; Lallement A; Souquet P; Gassie C; Sambusiti C; Grassl B; Jiménez-Lamana J; Cauzzi P; Monlau F
    Bioresour Technol; 2023 Feb; 369():128313. PubMed ID: 36375703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.