These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34003592)

  • 1. Enzymatic Hydrolysis-Responsive Supramolecular Hydrogels Composed of Maltose-Coupled Amphiphilic Ureas.
    Yoshisaki R; Kimura S; Yokoya M; Yamanaka M
    Chem Asian J; 2021 Jul; 16(14):1937-1941. PubMed ID: 34003592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and characterization of maltose-based amphiphiles as supramolecular hydrogelators.
    Clemente MJ; Fitremann J; Mauzac M; Serrano JL; Oriol L
    Langmuir; 2011 Dec; 27(24):15236-47. PubMed ID: 22124333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of C3-Symmetric Tris-Urea Low-Molecular-Weight Gelators.
    Yamanaka M
    Chem Rec; 2016 Apr; 16(2):768-82. PubMed ID: 26915980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of pH-Responsive Supramolecular Hydrogels in Basic Buffers: Self-assembly of Amphiphilic Tris-Urea.
    Kimura S; Haraya N; Komiyama T; Yokoya M; Yamanaka M
    Chem Pharm Bull (Tokyo); 2021; 69(11):1131-1135. PubMed ID: 34719596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and Self-Assembly Properties of Bola-Amphiphilic Glycosylated Lipopeptide-Type Supramolecular Hydrogels Showing Colour Changes Along with Gel-Sol Transition.
    Tsutsumi N; Ito A; Ishigamori A; Ikeda M; Izumi M; Ochi R
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33668410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic hydrolysis-induced degradation of a lactose-coupled supramolecular hydrogel.
    Akama S; Maki T; Yamanaka M
    Chem Commun (Camb); 2018 Aug; 54(64):8814-8817. PubMed ID: 29989110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of amide moieties for hydrogelators on gelation property and heating-free pH responsive gel-sol phase transition.
    Morita C; Kawai C; Kikuchi A; Imura Y; Kawai T
    J Oleo Sci; 2012; 61(12):707-13. PubMed ID: 23196871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple Stimuli-Responsive Supramolecular Gel Formed from Modified Adenosine.
    Kimura S; Mori S; Yokoya M; Yamanaka M
    Chem Pharm Bull (Tokyo); 2022; 70(6):443-447. PubMed ID: 35650041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amphiphilic Peptide-Based Supramolecular, Noncytotoxic, Stimuli-Responsive Hydrogels with Antibacterial Activity.
    Nandi N; Gayen K; Ghosh S; Bhunia D; Kirkham S; Sen SK; Ghosh S; Hamley IW; Banerjee A
    Biomacromolecules; 2017 Nov; 18(11):3621-3629. PubMed ID: 28953367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of a Bis-Urea Dimer and Its Effects on the Physical Properties of an Amphiphilic Tris-Urea Supramolecular Hydrogel.
    Sawada H; Yamanaka M
    Chem Asian J; 2018 Apr; 13(8):929-933. PubMed ID: 29512335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Alkyl Chain Length of N-Alkyl-N'-(2-benzylphenyl)ureas on Gelation.
    Komiyama T; Harada Y; Hase T; Mori S; Kimura S; Yokoya M; Yamanaka M
    Chem Asian J; 2021 Jul; 16(13):1750-1755. PubMed ID: 34008323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cation-tuned stimuli-responsive and optical properties of supramolecular hydrogels.
    Yamanaka M; Yanai K; Zama Y; Tsuchiyagaito J; Yoshida M; Ishii A; Hasegawa M
    Chem Asian J; 2015 Jun; 10(6):1299-303. PubMed ID: 25900015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Smart supramolecular gels of enolizable amphiphilic glycosylfuran.
    Thamizhanban A; Lalitha K; Sarvepalli GP; Maheswari CU; Sridharan V; Rayappan JBB; Nagarajan S
    J Mater Chem B; 2019 Oct; 7(40):6238-6246. PubMed ID: 31566636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maintaining homogeneity during a sol-gel transition by an autocatalytic enzyme reaction.
    Panja S; Adams DJ
    Chem Commun (Camb); 2018 Dec; 55(1):47-50. PubMed ID: 30507994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembly of amphiphilic Janus dendrimers into mechanically robust supramolecular hydrogels for sustained drug release.
    Nummelin S; Liljeström V; Saarikoski E; Ropponen J; Nykänen A; Linko V; Seppälä J; Hirvonen J; Ikkala O; Bimbo LM; Kostiainen MA
    Chemistry; 2015 Oct; 21(41):14433-9. PubMed ID: 26134175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design Strategies of Stimuli-Responsive Supramolecular Hydrogels Relying on Structural Analyses and Cell-Mimicking Approaches.
    Shigemitsu H; Hamachi I
    Acc Chem Res; 2017 Apr; 50(4):740-750. PubMed ID: 28252940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel competitive class of α-glucosidase inhibitors: (E)-1-phenyl-3-(4-styrylphenyl)urea derivatives.
    Kim JY; Lee JW; Kim YS; Lee Y; Ryu YB; Kim S; Ryu HW; Curtis-Long MJ; Lee KW; Lee WS; Park KH
    Chembiochem; 2010 Oct; 11(15):2125-31. PubMed ID: 20827790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the intestinal α-glucosidase enzyme specificities of starch-digesting maltase-glucoamylase and sucrase-isomaltase: synthesis and inhibitory properties of 3'- and 5'-maltose-extended de-O-sulfonated ponkoranol.
    Eskandari R; Jones K; Reddy KR; Jayakanthan K; Chaudet M; Rose DR; Pinto BM
    Chemistry; 2011 Dec; 17(52):14817-25. PubMed ID: 22127878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and properties of cholesterol-based hydrogelators with varying hydrophilic terminals: biocompatibility and development of antibacterial soft nanocomposites.
    Dutta S; Kar T; Mandal D; Das PK
    Langmuir; 2013 Jan; 29(1):316-27. PubMed ID: 23214716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pH-responsive and thermoreversible hydrogels of N-(2-hydroxyalkyl)-L-valine amphiphiles.
    Ghosh A; Dey J
    Langmuir; 2009 Aug; 25(15):8466-72. PubMed ID: 19290657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.