These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34003644)

  • 1. Ebullition Controls on CH
    Chen S; Wang D; Ding Y; Yu Z; Liu L; Li Y; Yang D; Gao Y; Tian H; Cai R; Chen Z
    Environ Sci Technol; 2021 Jun; 55(11):7287-7298. PubMed ID: 34003644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial and temporal variability of methane emissions from cascading reservoirs in the Upper Mekong River.
    Liu L; Yang ZJ; Delwiche K; Long LH; Liu J; Liu DF; Wang CF; Bodmer P; Lorke A
    Water Res; 2020 Nov; 186():116319. PubMed ID: 32846383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intense methane ebullition from urban inland waters and its significant contribution to greenhouse gas emissions.
    Wang G; Xia X; Liu S; Zhang L; Zhang S; Wang J; Xi N; Zhang Q
    Water Res; 2021 Feb; 189():116654. PubMed ID: 33242789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High Methane Emissions Largely Attributed to Ebullitive Fluxes from a Subtropical River Draining a Rice Paddy Watershed in China.
    Wu S; Li S; Zou Z; Hu T; Hu Z; Liu S; Zou J
    Environ Sci Technol; 2019 Apr; 53(7):3499-3507. PubMed ID: 30865437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of an Experimental Water-level Drawdown on Methane Emissions from a Eutrophic Reservoir.
    Beaulieu JJ; Balz DA; Birchfield MK; Harrison JA; Nietch CT; Platz MC; Squier WC; Waldo S; Walker JT; White KM; Young JL
    Ecosystems; 2018; 21(4):657-674. PubMed ID: 31007569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ebullition was a major pathway of methane emissions from the aquaculture ponds in southeast China.
    Yang P; Zhang Y; Yang H; Guo Q; Lai DYF; Zhao G; Li L; Tong C
    Water Res; 2020 Oct; 184():116176. PubMed ID: 32693266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global methane and nitrous oxide emissions from inland waters and estuaries.
    Zheng Y; Wu S; Xiao S; Yu K; Fang X; Xia L; Wang J; Liu S; Freeman C; Zou J
    Glob Chang Biol; 2022 Aug; 28(15):4713-4725. PubMed ID: 35560967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methane emissions from Amazonian Rivers and their contribution to the global methane budget.
    Sawakuchi HO; Bastviken D; Sawakuchi AO; Krusche AV; Ballester MV; Richey JE
    Glob Chang Biol; 2014 Sep; 20(9):2829-40. PubMed ID: 24890429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial and temporal heterogeneity of methane ebullition in lowland headwater streams and the impact on sampling design.
    Robison AL; Wollheim WM; Turek B; Bova C; Snay C; Varner RK
    Limnol Oceanogr; 2021 Dec; 66(12):4063-4076. PubMed ID: 35874272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deconstructing Methane Emissions from a Small Northern European River: Hydrodynamics and Temperature as Key Drivers.
    McGinnis DF; Bilsley N; Schmidt M; Fietzek P; Bodmer P; Premke K; Lorke A; Flury S
    Environ Sci Technol; 2016 Nov; 50(21):11680-11687. PubMed ID: 27696829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autochthonous dissolved organic matter potentially fuels methane ebullition from experimental lakes.
    Zhou Y; Zhou L; Zhang Y; Garcia de Souza J; Podgorski DC; Spencer RGM; Jeppesen E; Davidson TA
    Water Res; 2019 Dec; 166():115048. PubMed ID: 31518733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size does matter: importance of large bubbles and small-scale hot spots for methane transport.
    DelSontro T; McGinnis DF; Wehrli B; Ostrovsky I
    Environ Sci Technol; 2015 Feb; 49(3):1268-76. PubMed ID: 25551318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupling of stable carbon isotopic signature of methane and ebullitive fluxes in northern temperate lakes.
    Thottathil SD; Prairie YT
    Sci Total Environ; 2021 Jul; 777():146117. PubMed ID: 33689901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ebullitive methane emissions from oxygenated wetland streams.
    Crawford JT; Stanley EH; Spawn SA; Finlay JC; Loken LC; Striegl RG
    Glob Chang Biol; 2014 Nov; 20(11):3408-22. PubMed ID: 24756991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxic urban rivers as a potential source of atmospheric methane.
    Zhao F; Zhou Y; Xu H; Zhu G; Zhan X; Zou W; Zhu M; Kang L; Zhao X
    Environ Pollut; 2022 Mar; 297():118769. PubMed ID: 34973384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hot spot of CH
    Tang W; Xu YJ; Ma Y; Maher DT; Li S
    Water Res; 2021 Oct; 204():117624. PubMed ID: 34500180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear response of methane release to increased trophic state levels coupled with microbial processes in shallow lakes.
    Zhou Y; Song K; Han R; Riya S; Xu X; Yeerken S; Geng S; Ma Y; Terada A
    Environ Pollut; 2020 Oct; 265(Pt B):114919. PubMed ID: 32540596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in ebullitive methane release from small, shallow ponds present challenges for scaling.
    Baron AAP; Dyck LT; Amjad H; Bragg J; Kroft E; Newson J; Oleson K; Casson NJ; North RL; Venkiteswaran JJ; Whitfield CJ
    Sci Total Environ; 2022 Jan; 802():149685. PubMed ID: 34464805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Spatial-temporal Characteristics and Driving Factors of Greenhouse Gas Emissions from Rivers in a Rapidly Urbanizing Area].
    Liu TT; Wang XF; Yuan XZ; Gong XJ; Hou CL
    Huan Jing Ke Xue; 2019 Jun; 40(6):2827-2839. PubMed ID: 31854677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [CH
    Shang DY; Xiao QT; Hu ZH; Xie YH; Huang WJ; Zhang M
    Huan Jing Ke Xue; 2018 Nov; 39(11):5227-5236. PubMed ID: 30628248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.