BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 34003767)

  • 1. HIF1α or HIF2α: Enhancing CD8
    Chen J
    Cancer Immunol Res; 2021 Apr; 9(4):364. PubMed ID: 34003767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modified Hypoxia-Inducible Factor Expression in CD8
    Veliça P; Cunha PP; Vojnovic N; Foskolou IP; Bargiela D; Gojkovic M; Rundqvist H; Johnson RS
    Cancer Immunol Res; 2021 Apr; 9(4):401-414. PubMed ID: 33602720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reinforce the antitumor activity of CD8
    Nabe S; Yamada T; Suzuki J; Toriyama K; Yasuoka T; Kuwahara M; Shiraishi A; Takenaka K; Yasukawa M; Yamashita M
    Cancer Sci; 2018 Dec; 109(12):3737-3750. PubMed ID: 30302856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic Control of CD8
    Zhang L; Romero P
    Trends Mol Med; 2018 Jan; 24(1):30-48. PubMed ID: 29246759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interleukin-33, a Potential Cytokine Expressed in Tumor Microenvironment Involves in Antitumor Immunotherapy Through Facilitates CD8
    Li X; Lv Q; Feng Y; Gu Y; Xia R; Ma J; He H; Zhu Y
    J Interferon Cytokine Res; 2018 Nov; 38(11):491-499. PubMed ID: 30452317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Roles of CD8
    St Paul M; Ohashi PS
    Trends Cell Biol; 2020 Sep; 30(9):695-704. PubMed ID: 32624246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A
    Kjaergaard J; Hatfield S; Jones G; Ohta A; Sitkovsky M
    J Immunol; 2018 Jul; 201(2):782-791. PubMed ID: 29802128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sialic Acid Blockade Suppresses Tumor Growth by Enhancing T-cell-Mediated Tumor Immunity.
    Büll C; Boltje TJ; Balneger N; Weischer SM; Wassink M; van Gemst JJ; Bloemendal VR; Boon L; van der Vlag J; Heise T; den Brok MH; Adema GJ
    Cancer Res; 2018 Jul; 78(13):3574-3588. PubMed ID: 29703719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic enhancement of antitumor immunity with adoptively transferred tumor-specific CD4+ and CD8+ T cells and intratumoral lymphotactin transgene expression.
    Huang H; Li F; Gordon JR; Xiang J
    Cancer Res; 2002 Apr; 62(7):2043-51. PubMed ID: 11929823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adoptive CD8
    Jiang X; Xu J; Liu M; Xing H; Wang Z; Huang L; Mellor AL; Wang W; Wu S
    Cancer Lett; 2019 Oct; 462():23-32. PubMed ID: 31356845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunotherapy Expands and Maintains the Function of High-Affinity Tumor-Infiltrating CD8 T Cells In Situ.
    Moran AE; Polesso F; Weinberg AD
    J Immunol; 2016 Sep; 197(6):2509-21. PubMed ID: 27503208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CX3CR1-CD8+ T cells are critical in antitumor efficacy but functionally suppressed in the tumor microenvironment.
    Yamauchi T; Hoki T; Oba T; Saito H; Attwood K; Sabel MS; Chang AE; Odunsi K; Ito F
    JCI Insight; 2020 Apr; 5(8):. PubMed ID: 32255766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recruitment of host CD8+ T cells by tumor-infiltrating lymphocytes and recombinant interleukin-2 during adoptive immunotherapy of cancer.
    Burger UL; Chang MP; Goedegebuure PS; Eberlein TJ; Adams-Hodgins S
    Surgery; 1995 Mar; 117(3):325-33. PubMed ID: 7878540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward improved immunocompetence of adoptively transferred CD8+ T cells.
    Speiser DE; Romero P
    J Clin Invest; 2005 Jun; 115(6):1467-9. PubMed ID: 15931384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concurrent induction of CD4+ and CD8+ T cells during tumor growth with antitumor reactivity in adoptive immunotherapy.
    Arca MJ; Krauss JC; Aruga A; Cameron MJ; Chang AE
    J Immunother; 1997 Mar; 20(2):138-45. PubMed ID: 9087386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human effector T cells derived from central memory cells rather than CD8(+)T cells modified by tumor-specific TCR gene transfer possess superior traits for adoptive immunotherapy.
    Wu F; Zhang W; Shao H; Bo H; Shen H; Li J; Liu Y; Wang T; Ma W; Huang S
    Cancer Lett; 2013 Oct; 339(2):195-207. PubMed ID: 23791878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced local and systemic anti-melanoma CD8+ T cell responses after memory T cell-based adoptive immunotherapy in mice.
    Contreras A; Sen S; Tatar AJ; Mahvi DA; Meyers JV; Srinand P; Suresh M; Cho CS
    Cancer Immunol Immunother; 2016 May; 65(5):601-11. PubMed ID: 27011014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting REGNASE-1 programs long-lived effector T cells for cancer therapy.
    Wei J; Long L; Zheng W; Dhungana Y; Lim SA; Guy C; Wang Y; Wang YD; Qian C; Xu B; Kc A; Saravia J; Huang H; Yu J; Doench JG; Geiger TL; Chi H
    Nature; 2019 Dec; 576(7787):471-476. PubMed ID: 31827283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward T Cell-Mediated Control or Elimination of HIV Reservoirs: Lessons From Cancer Immunology.
    Mylvaganam G; Yanez AG; Maus M; Walker BD
    Front Immunol; 2019; 10():2109. PubMed ID: 31552045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the CD8+ T effector to memory transition in adoptive T-cell antitumor immunotherapy.
    Rolle CE; Carrio R; Malek TR
    Cancer Res; 2008 Apr; 68(8):2984-92. PubMed ID: 18413768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.